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Abstract

Recent precision medicine initiatives have led to the expectation of improved clinical decision-

making anchored in genomic data science. However, over the last decade, only a handful of new 

single-gene product biomarkers have been translated to clinical practice (FDA approved) in spite 

of considerable discovery efforts deployed and a plethora of transcriptomes available in the Gene 

Expression Omnibus. With this modest outcome of current approaches in mind, we developed a 

pilot simulation study to demonstrate the untapped benefits of developing disease detection 

methods for cases where the true signal lies at the pathway level, even if the pathway’s gene 

expression alterations may be heterogeneous across patients. In other words, we relaxed the cross-

patient homogeneity assumption from the transcript level (cohort assumptions of deregulated gene 

expression) to the pathway level (assumptions of deregulated pathway expression). Furthermore, 

we have expanded previous single-subject (SS) methods into cohort analyses to illustrate the 

benefit of accounting for an individual’s variability in cohort scenarios. We compare SS and 

cohort-based (CB) techniques under 54 distinct scenarios, each with 1,000 simulations, to 

demonstrate that the emergence of a pathway-level signal occurs through the summative effect of 

its altered gene expression, heterogeneous across patients. Studied variables include pathway gene 
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set size, fraction of expressed gene responsive within gene set, fraction of expressed gene 

responsive up-vs down-regulated, and cohort size. We demonstrated that our SS approach was 

uniquely suited to detect signals in heterogeneous populations in which individuals have varying 

levels of baseline risks that are simultaneously confounded by patient-specific “genome-by-
environment” interactions (G×E). Area under the precision-recall curve of the SS approach far 

surpassed that of the CB (1st quartile, median, 3rd quartile: SS = 0.94, 0.96, 0.99; CB= 0.50, 0.52, 

0.65). We conclude that single-subject pathway detection methods are uniquely suited for 

consistently detecting pathway dysregulation by the inclusion of a patient’s individual variability.
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1. Introduction

Recent precision medicine initiatives have led clinicians, patients, and investors to expect 

improved clinical decision-making anchored in genomic data science. Conventionally, 

precise prognostication and therapeutic decision-making relies on assays measuring the 

expression or activity of specific molecules driving a pathophysiological mechanism 

implicated in disease progression or drug response. To extend conventional biomarker 

discovery in the post-genome era, the NIH has invested more than $2.5 billion/year in 

hypothesis- and data-driven “biomarker” grants (>30,000 grants in 25 years) [1]. Yet, in the 

last decade, only a handful of new single-gene product biomarkers have been translated to 

clinical practice [2, 3] in spite of considerable discovery efforts deployed and a plethora of 

transcriptomes available in the Gene Expression Omnibus. This may be due, in part, to the 

challenging FDA requirements for biomarker qualification, which has conventionally 

required a high level of evidence on the degree of biological understanding between a 

qualified biomarker and the predicted pathophysiology or drug response [4]. Perhaps, the 

community has exhausted the reductionist approach for identifying one gene product 

expression associated to the prognosis or therapeutic response of complex diseases. Further, 

could it be that, as anticipated by statistical geneticists a decade and a half ago [5] and newly 

rediscovered [6], diseases of complex genetic inheritance (complex diseases) are not often 

amenable to the single gene biomarker reductionism that has worked so well for Mendelian 

diseases? Rather than modifying the FDA evidentiary criteria for biomarker qualification, 

we and others postulate that a paradigm shift is required for integrative or systems biology 

approaches to enable new types of biomarker discovery [7–10]. To address this biomarker 

dilemma, we propose to use two strategies jointly: (1) the discovery of pathway-level 

composite biomarkers consisting of multiple gene products that are combined in a stated 

algorithm to reach a single interpretive readout**, and (2) the use of single-subject (SS) 

(isogenic) analytics to recover an effect size and statistical significance and thereafter 

aggregating these signals across subjects.

**Guidance for Industry and FDA Staff Qualification Process for Drug Development Tools. 1/2014 U.S. Department of Health and 
Human Services. Food and Drug Administration. Center for Drug Evaluation and Research (CDER). https://www.fda.gov/downloads/
drugs/guidances/ucm230597.pdf
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Why utilize SS analytics rather than DNA sequencing for pathway-level biomarkers? In 

practice, a single-subject transcriptome or proteome may be easier to interpret as it provides 

the downstream additive effects of genomes and proteomes, and thus there could, in 

principle, be more similarities between transcriptomes than genomes of distinct individuals 

suffering from a complex disease and responding similarly to a drug. Precision medicine has 

advanced primarily through DNA sequencing. Unsurprisingly, most DNA sequences remain 

uninterpretable: Snyder’s group identified >130,000 very rare or private single nucleotide 

variants not previously observed in HAPMAP [11]. However, gene product expression 

cannot easily be annotated as normal or dysregulated on a single subject; therefore, a 

personal reference transcriptome or proteome should be designed ideally in isogenic 

conditions with a specific cell type in a specified environmental and known epigenetic 

context. Fortunately, the biomedical informatics and bioinformatics research community is 

responding to this growing need for identifying the best prognosis and therapeutic response 

for a specific individual with a paradigm shift in gene product analyses.

Statistical and clinical frameworks are being developed for single-subject (n-of-1) 

interpretation of transcriptomes and transcriptomic responses, such as single sample 

pathway transformations [12, 13], and comparing their results to pathways expressed in 

differentially expressed genes discovered by conventional statistics. Newer studies have been 

designed to discover differentially expressed features in a single subject (gene products and 

pathways) and are based on reference transcriptome-based interpretations [14, 15], two 

paired samples [16, 17], or individual time expression series [18, 19]. None of these studies, 

nor related ones we recently reviewed††, attempted to quantify how well the discovered 

single-subject gene set/pathway signal could aggregate across distinct subjects without an 

underlying assumption of having the same gene products differentially expressed.

Implicitly, these single-subject (SS) methods differ from conventional cohort-based (CB) 

statistics as they are devoid of cross-subject assumptions and could provide the framework 

for a common pathway-level biomarker across subjects stemming from the summative effect 

of distinct polymorphisms, distinct epigenetics, and distinct transcriptomes in each subject. 

We hypothesized that we could conduct a proof-of-concept simulation to establish that 

conditions of operations for discovery of a common biomarker are feasible in practice. 

Therefore, we designed a simulation study to identify pathway-level effect size and 

statistical significance within subject and then used descriptive statistics across-subject to 

find common pathways. We utilize the n-of-1-pathways kMEn method on two paired 

samples for its simplicity. Our goals are i) to understand the robustness of single-subject 

methods in heterogenic and heterogeneous expression scenarios across subjects that are ill-

suited for conventional cohort-level discovery methods (e.g., paired T-test as a control), and 

ii) to demonstrate the benefit of including biological pathways as part of what constitutes a 

reference systems-level biomarker. As Figure 1 shows, in dysregulated pathways, patients 

with the same condition may have different genes responsive to a stimulus when compared 

to paired samples (e.g., before and during therapy; cancer vs control tissue), making 

††Vitali F, Li Q, Schissler AG, Berghout J, Kenost C, Lussier YA*. Developing a ‘personalome’ for precision medicine: emerging 
methods that compute clinically interpretable effect sizes from single-subject omics. Brief Bioinform, Accepted.
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conventional differential expression or classification tasks inherently difficult when 

searching for a common gene product signal across subjects.

2. Methods

2.1. Datasets

An RNA-seq dataset was downloaded from GTEx‡‡ and filtered to include only brain tissue 

samples. The resulting dataset contained 1,632 brain samples of distinct human individuals 

and 18,327 measured genes. This dataset was used to estimate average gene expression for 

patients in our simulation. Since donors had varying numbers of replicates, only donors with 

at least 8 replicates were kept to reliably estimate their sampling distributions (see Section 

2.2). This criterion resulted in a reduction from 97 to 87 distinct patients. Gene Ontology 

Biological Processes (GO-BP)[20, 21] groups genes into their respective pathways (gene 

sets). The GO-BP dataset was downloaded in June 2015 using the org.Hs.eg.db package 

from Bioconductor[22].

2.2. Parameter estimation: modeling heterogenic human paired samples

Each gene’s expression distribution parameters for each patient were estimated using the 

method of moments technique [23]. Our model assumes the Negative Binomial – NB(μ,θ) – 

distribution, and the GTEx dataset was used to estimate each gene’s mean expression, μ, and 

its dispersion parameter, θ, where the dispersion parameter connects the mean to the 

variance as follows:

(1)

When the variance was less than the mean and its distribution was consequently under-

dispersed compared to the Poisson, we conservatively defined the gene expression to follow 

a Poisson(μ) distribution. A fold-change multiplier, K, was used to generate the responsive 

genes in dysregulated pathways, and K followed a Uniform(3,5) distribution to ensure 

separation between responsive and non-responsive genes. For non-responsive genes, K=1. 

Equations (2) and (3) show that the updated NB distribution for a gene, Gi, is actually a 

discrete mixture distribution where (2) is the underlying sampling distribution if the 

dysregulated gene is up-regulated with probability p, and (3) is the sampling distribution if it 

is down-regulated with probability 1-p, where p ε [0,1].

(2)

(3)

Equations (4) and (5) show the Poisson distribution for an under-dispersed gene, Gi

‡‡https://gtexportal.org/home/datasets: RNA-Seq Data: GTEx_Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_reads.gct
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(4)

(5)

To establish heterogeneity, we assumed each patient as a distinct population with its own 

patient-specific population parameters. Therefore, for any given subject j, eqs. (2–5) 

become:

(6–7)

(8–9)

This results in N=87 distinct distributions from which we sample n patients without 

replacement, ensuring patient-specific baseline expression levels and modeling a 

heterogeneous population.

2.3. Simulation Parameters

Table 1 shows the different conditions of interest (54 combinations) that span our study. The 

gene set size parameter was chosen to analyze how the fraction of responsive genes within 

the gene set affects the detection ability in small gene sets (e.g., 5% responsive results in 

2/40 genes responsive) vs. large gene sets (5% responsive results in 10/200 genes 

responsive). The fraction responsive within the gene set parameter was chosen to model the 

effect of randomly selecting r genes to be responsive in a dysregulated pathway in each 

patient. Clearly, when the fraction increases, the chances of the same gene being responsive 

across all patients increases. Similarly, the fraction responsive up-regulated was conceived to 

model the effect of randomly choosing the direction of dysregulation for the responsive 

genes in that pathway, such that even if the same gene is responsive across patients, their 

direction of dysregulation might not be. Finally, the number of patients in the cohort 

parameter was chosen to examine the needed size of a cohort for detecting a dysregulated 

pathway when its signal is reflected via the summative effect of the genes within it. The 

graphs in Fig. 1 illustrate how varying the parameters affects dysregulated pathways across 

patients in a cohort.

2.4. Pathway dysregulation detection methods

Table 2 details the workflow of this simulation study (Fig. 2). We generate n heterogenic 

transcriptomes, each corresponding to one subject (heterogenic conditions between patients). 

We then generate from each patient distribution a paired transcriptome thus creating noise in 

isogenic conditions, in which we further modify a pathway as follows. First, we randomly 

select a gene set from a real GO-BP pathway of size m, randomly select which annotated 
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genes among this gene set will be responsive according to parameters of Table 1, and we 

sample from their dysregulated distributions (Eq. 6–9) to generate a positive (dysregulated) 

pathway. Then, we select a second gene set from a distinct existing GO-BP, of size m as 

well, as an unaltered pathway to use as our control. Finally, we apply the SS and CB 

pathway detection pipelines, and then compare and evaluate them. We note that the single-

subject approach aggregates the p-values by taking the sample median, as the sample median 

provides a simple yet robust location estimator in small sample sizes, which provided us 

with the flexibility of experimenting with sample sizes of n < 10 [24]. Furthermore, 

Benjamini and Yekutieli’s (FDR_BY) approach is used for false discovery rate 

correction[25].

2.5. Precision recall calculations

In this study, we evaluate the SS and CB approaches using precision-recall plots. Provided a 

given threshold, the equations for precision and recall are:

(10–11)

Each of the 54 combinations results in a pair of precision-recall curves that are used to 

compare SS to CB approaches. The R ggplot2 package[27] was used to construct the 

precision-recall plots.

3. Results

Fig. 3 depicts the precision-recall curves, grouping them by their parameters to highlight the 

effects of each the parameters individually and holistically. The greatest difference in 

performance between the SS approach and the CB technique occurs when responsive genes 

are fully bidirectional (i.e., equally expressed in both directions; Fraction Responsive up-

regulated, p = 50%) or when the same genes are not consistently responsive across pathways 

(fraction responsive with in gene set = 5%). The smallest gap in performance between these 

methods occurs when the fraction responsive within gene set is high (as genes are more 

likely to be responsive consistently across patients) and, in some cases, when the precision-

recall curves are overlapping. Increasing the pathway size and the sample size also improves 

the detection-ability of both approaches though the marginal benefit of increasing each 

parameter is much larger for the CB approach.

The panels in Fig. 3 allow for visually assessing the effects of varying multiple parameters 

simultaneously. For example, increasing the number of responsive genes in the pathway 

compensates for adding bi-directionality into the mix (and vice versa), although the SS 

approach still detects the signal at a much higher rate than the CB approach. Furthermore, 

increasing the pathway size and/or the cohort size improves the performances of both 

approaches in most cases. The simulation settings where the CB method is comparable to 

the SS approach is when the signal is strongest (% responsive = 25%), N is large, and there 

is little or no bi-directionality in gene expression levels. This shows that outside of this 
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specific condition, even CB approaches that can handle bi-directionality will still be 

underpowered (in varying levels) vis-à-vis an SS approach.

4. Discussion

As mentioned in Section 3, two of the biggest indicators of whether the t-test would fail are 

pathways with different genes responsive across patients (Fraction responsive within gene 

set = 5%) and pathways with genes equally expressed in both directions (Fraction responsive 

up regulated = 50%). Not surprisingly, one of the biggest differences in performances occurs 

with full bi-directionality with a method like the t-test, and methods like DEGSeq address 

this [28]. However, as illustrated in Fig. 1, when the signal lies at the pathway-level, 

different genes are responsive in different patients (as well as potentially their direction of 

dysregulation). This means that in a cohort of three patients, the same gene in a dysregulated 

pathway could be (responsive, up-regulated) in Patient 1, (responsive, down-regulated) 

Patient 2, or non-responsive in Patient 3, rendering a CB approach nearly unusable. 

Therefore, decreasing the fraction responsive within gene set parameter shows how a CB 

approach greatly underperforms when the true signal lies at the pathway level and it attempts 

detecting it through genes not consistently responsive across patients. In addition, 

heterogeneous baseline risks add an extra layer of complexity that CB approaches are not 

equipped to handle since an up-regulated responsive gene in Patient A might have a lower 

expression level than the same gene, non-responsive in Patient B. These factors, individually 

and in aggregate, make an SS method uniquely suited for detecting diseases in individuals 

when patient-specific factors harm CB approaches and when we allow biological pathways 

to represent a reference systems-level biomarker. Finally, taking a consensus of the SS 

predictions results in a robust cohort prediction that can consistently detect converging gene 

set signals in heterogenic populations via the summative effect of altered gene expression.

4.1. Limitations and future studies

One of the major challenges in simulation studies is the inclusion of noise and the effects 

introduced into the analysis; here we used a single model source. Of note, each patient of a 

cohort in the simulation is seeded by a distinct transcriptome distribution from GTEx and 

noise is generated implicitly by the algorithm on the entire transcriptome of each paired 

sample, creating isogenic noise within patient as well as heterogenic noise across subject 

conditions ab initio. In future studies, real data will be utilized to estimate the fraction 

responsive (5%–25%) and fraction upregulated (25%–100%) parameters according to the 

type of diseases. Currently the wide range of simulation of these parameters likely spans 

multiple distinct unrelated biology and should be clarified (e.g. Mendelian diseases vs 

cancer vs diabetes).”

The scope for this proof of concept was also limited to one single-subject and one cohort-

based approach. Since the kMEn algorithm and the enriched paired t-test are by no means 

the only SS and CB approaches, respectively, we foresee potential follow-up studies with 

multiple SS [3] and multiple CB methods [29] in order to find which techniques within these 

two frameworks are best suited to handle this type of data. A more comprehensive analysis 
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would then allow us to make broader claims with respect to the feasibility of detecting 

diseases using biological pathways as biomarkers in heterogeneous patient populations.

With this simulation study, we demonstrate the benefits of expanding the definition of a 

biomarker by illustrating biological conditions in which the ‘true’ signal is not detectable at 

the gene level, and must, therefore, be pushed upstream to the pathway level. As Fig. 3 

shows, the CB method achieved comparable performance in only 6 out of the 36 simulation 

conditions. Unless an infrequent “niche” scenario is present, this (and potentially other CB 

methods with the same drawbacks) will fail to consistently detect diseases whose signals are 

found at the pathway level. Expanding SS methods into cohort studies and allowing for 

pathways to serve as a reference biomarker in disease detection have the potential to offer 

more tools for detecting diseases in cases where existing methods have failed to provide 

consistent success.

Clearly, the exhaustive conventional biomarker discovery effort to identify a single gene 

product consistently dysregulated in each patient with complex disorders yields infrequent 

results at best. Moreover, the difficulty increases when within-subject biological replicates 

are not available either due to limited tissue availability or invasive tissue-sampling 

procedures among other cost-preventive limitations. Despite the decreasing costs associated 

with advancing RNA-seq technologies, the incentives still favor sequencing more subjects 

rather than obtaining multiple biological replicates per subject. Future studies should test in 

human datasets (both with and without subject-specific biological replicates) using various 

experimental conditions, mitigating geneset enrichment inflation due to inter-transcript 

correlations [32], to understand the frequency of the proposed scenario of heterogeneous 

signal within a pathway across patients. While kMEn’s algorithm requires a large 

transcriptome, democratizing pathway-level biomarkers as an affordable qPCR assay can be 

attained with self-contained approaches [31,33].

5. Conclusion

As medicine continues to shift towards precision medicine and the n-of-1 framework, it will 

be necessary to consider novel approaches for effectively qualifying biological pathways for 

FDA approval as composite biomarkers[30]. We provide evidence via this proof-of-concept 

study that, under certain conditions, this may be the optimal way of detecting pathway 

mechanisms associated to the prognosis or drug response of complex diseases, as the signal 

may consistently aggregate at the pathway level in each subject in spite of a distinct subset 

of transcript dysregulation across subjects.

This simulation was developed to show the potential advantages of using a pathway as a 

biomarker using the ‘N-of-1-pathways’ framework [31] and that single-subject (SS) 

approaches (expanded into cohort studies) can provide certain advantages over conventional 

cohort-based techniques. We demonstrated that our SS approach was uniquely better suited 

to detect signals in heterogeneous populations in which individuals have varying levels of 

baseline risks that are simultaneously confounded by patient-specific “genome –by– 

environment” interactions (G×E).
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Finally, these approaches should, in principle, scale to other quantitative ‘omics measures 

such as proteomics or metabolomics. Future studies should consider aggregating pathway 

signals across multiple ‘omics measures in heterogeneous conditions across patients using 

strong systems biology modeling of a single subject for consistency of multiscale signal 

within patient (e.g., reverberation of a pathway-level signal from DNA to mRNA to protein). 

The success of precision medicine demands advancing genome-anchored clinical decision-

making and having the courage to challenge failed or unproductive data analytics models. A 

handful of statistical geneticists has long anticipated that epistasis, pleiotropy, and systems 

biology principles be incorporated for effectively modeling genomics data. This proof of 

concept brings us closer to realizing their vision in transforming the biomarker discovery 

process.

Acknowledgments

The author would like to thank Dr. Colleen Kenost for manuscript revisions.

References

1. Ptolemy AS, Rifai N. What is a biomarker? Research investments and lack of clinical integration 
necessitate a review of biomarker terminology and validation schema. Scand J Clin Lab Invest 
Suppl. 2010; 242:6–14. [PubMed: 20515269] 

2. Fuzery AK, et al. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues 
and challenges. Clin Proteomics. 2013; 10(1):13. [PubMed: 24088261] 

3. Pavlou MP, Diamandis EP, Blasutig IM. The long journey of cancer biomarkers from the bench to 
the clinic. Clin Chem. 2013; 59(1):147–57. [PubMed: 23019307] 

4. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain 
path to clinical utility. Nat Biotechnol. 2006; 24(8):971–83. [PubMed: 16900146] 

5. Ritchie MD, et al. Multifactor-dimensionality reduction reveals high-order interactions among 
estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001; 69(1):138–47. 
[PubMed: 11404819] 

6. Zuk O, et al. The mystery of missing heritability: Genetic interactions create phantom heritability. 
Proc Natl Acad Sci U S A. 2012; 109(4):1193–8. [PubMed: 22223662] 

7. McDermott JE, et al. Challenges in Biomarker Discovery: Combining Expert Insights with 
Statistical Analysis of Complex Omics Data. Expert Opin Med Diagn. 2013; 7(1):37–51. [PubMed: 
23335946] 

8. Moore JH. A global view of epistasis. Nat Genet. 2005; 37(1):13–4. [PubMed: 15624016] 

9. Massague J. Sorting out breast-cancer gene signatures. N Engl J Med. 2007; 356(3):294–7. 
[PubMed: 17229957] 

10. Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet. 
2014; 15(1):34–48. [PubMed: 24296534] 

11. Chen R, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 
2012; 148(6):1293–307. [PubMed: 22424236] 

12. Chuang HY, et al. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007; 
3:140. [PubMed: 17940530] 

13. Yang X, et al. Single sample expression-anchored mechanisms predict survival in head and neck 
cancer. PLoS Comput Biol. 2012; 8(1):e1002350. [PubMed: 22291585] 

14. Liu R, et al. Identifying critical transitions of complex diseases based on a single sample. 
Bioinformatics. 2014; 30(11):1579–86. [PubMed: 24519381] 

15. Drier Y, Sheffer M, Domany E. Pathway-based personalized analysis of cancer. Proc Natl Acad Sci 
U S A. 2013; 110(16):6388–93. [PubMed: 23547110] 

Zaim et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Li Q, et al. kMEn: Analyzing noisy and bidirectional transcriptional pathway responses in single 
subjects. J Biomed Inform. 2017; 66:32–41. [PubMed: 28007582] 

17. Li Q, et al. N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis 
in discovering dynamic changes of transcriptomes. BMC Med Genomics. 2017; 10(Suppl 1):27. 
[PubMed: 28589853] 

18. Wu S, Wu H. More powerful significant testing for time course gene expression data using 
functional principal component analysis approaches. BMC Bioinformatics. 2013; 14:6. [PubMed: 
23323795] 

19. Martini P, et al. timeClip: pathway analysis for time course data without replicates. BMC 
Bioinformatics. 2014; 15(Suppl 5):S3.

20. Ashburner M, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000; 25(1):25–
29. [PubMed: 10802651] 

21. Gene Ontology Consortium: going forward. Nucleic Acids Research. 2015; 43(D1):D1049–56. 
[PubMed: 25428369] 

22. Gentleman RC, et al. Bioconductor: Open software development for computational biology and 
bioinformatics. Genome Biol. 2004:5.

23. Casella, G., Berger, RL. Statistical inference. Vol. 2. Duxbury Pacific Grove; CA: 2002. 

24. Rousseeuw PJ, Verboven S. Robust estimation in very small samples. Computational Statistics & 
Data Analysis. 2002; 40(4):741–758.

25. Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing under 
Dependency. The Annals of Statistics. 2001; 29(4):1165–1188.

26. G UJ. Fisher’s Exact Test. Journal of the Royal Statistical Society. 1992; 155(3):395–402.

27. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2009. 

28. Wang L, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq 
data. Bioinformatics. 2010; 26(1):136–8. [PubMed: 19855105] 

29. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology. 
2010; 11(10):R106. [PubMed: 20979621] 

30. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010; 5(6):463–6. [PubMed: 
20978388] 

31. Gardeux V, et al. ‘N-of-1-pathways’ unveils personal deregulated mechanisms from a single pair of 
RNA-Seq samples: towards precision medicine. J Am Med Inform Assoc. 2014; 21(6):1015–25. 
[PubMed: 25301808] 

32. Schissler AG, et al. Testing for differentially expressed genetic pathways with single-subject N-
of-1 data in the presence of inter-gene correlation. Stat Methods Med Res. 2017 Jan 1. 
962280217712271. 

33. Schissler AG, et al. Dynamic changes of RNA-sequencing expression for precision medicine: N-
of-1-pathways Mahalanobis distance within pathways of single subjects predicts breast cancer 
survival. Bioinformatics. 2015; 10(12):i293–302. 31. 

Zaim et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Pathway dysregulation across various biological conditions
Each graph represents a patient (within three cohorts of three subjects), illustrating the same 

biological pathway for each patient. The nodes are the genes in a pathway. The colored 

nodes are responsive genes in each subject, and their color denotes the direction of 

dysregulation. The three rows represent various scenarios we examined in this simulation 

study to define a cohort.
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Fig. 2. Workflow: Single-subject (SS) and cohort-based (CB) pipelines
(SS; top) Given the simulated values as input, the transcript expression measurements for 

each of the N paired transcriptomes are used to calculate the fold change (K) between paired 

samples. Next, the genes are clustered into three groups to define responsive transcripts 

(RTs), and then an enrichment test is conducted using Fisher’s Exact Test (FET). This 

produces N p-values (one for each patient in the cohort), and the median p-value is taken as 

the kMEn-cohort prediction. (CB; bottom) Using the same simulated data, alternatively 

examined CB approach employs a paired t-test to find differentially expressed genes (DEGs) 

followed by an enrichment test using FET, resulting in a single pathway prediction utilizing 

all samples. Both approaches are then compared by inspecting their precision-recall curves.

Zaim et al. Page 12

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Cross-subject aggregation of single-subject pathway predictions (kMEn) robustly detects 
signals while cohort-based method (Student’s paired t-test) fails on heterogeneous conditions
SS kMEn method applied to paired samples of one subject works in isogenic conditions by 

design, which explains how pathway signals can thereafter be aggregated across subjects in 

spite of heterogenic noise confounding the conventional cohort-based method. Each subject 

simulation comes from a distinct transcriptome sampled from GTEx, creating heterogenic 

conditions between subjects. Each seed sample from GTEx is modified according to 

parameters in Table 1 generating distinct scenarios. The four sets of panels characterize 

distinct scenarios in the simulation and are organized in blocks. Within each block, there are 

various levels of ‘signal quality’ and across blocks there are different combinations of cohort 

and pathway sizes. The 9 precision-recall curves (PR), within each block, represent the 

performance of the SS (black) and CB (red) approaches at various levels of genes responsive 

in a pathway as well as at various levels of bi-directionality. PR area under the curve (AUC) 

of SS surpasses that of CB (1st quartile, median, 3rd quartile: SS = 0.94, 0.96, 0.99; CB= 

0.50, 0.52, 0.65). Each block represents how both methods perform when varying the gene 

set size or the cohort size. Omitted are the results for N=20 to promote visualization and 
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they are highly similar to the N=30 scenarios. Using GO-BP2017, we simulated test cohorts 

(n=3 subjects) and obtained comparable accuracies.
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Table 1

Simulation Parameters generating 54 distinct scenarios (1000 simulations/scenario)

Parameter Notation Values

Gene Set Size m 40 200

Fraction Responsive within gene set r 5% 10% 25%

Fraction Responsive up regulated p 25% 50% 100%

Number of patients in cohort n 10 20 30
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Table 2

Algorithm

For each parameter combination, replicate the following 1000 times.

 1. Dataset Generation: Simulate N Paired-Transcriptomes (representing normal, tumor) using heterogenic gene distributions described above.

  a. For each normal transcriptome, simulate gene expression levels by randomly sampling from each patient’s baseline distribution.

  b. For each tumor transcriptome, first generate a normal transcriptome, then generate the positive dysregulated pathway as follows:

   i. Choose a gene set size, m, and randomly sample a pathway of size m from GO-BP.

   ii. Randomly choose r genes from the selected pathway.

   iii. For each of the r genes, sample from its dysregulated distribution such that, each r dysregulated genes, Gi follows a discrete mixture 
distribution where

    1. Gij ~ p* NB(μij * K, θij) + (1-p) * NB(μij * K−1, θij), or

    2. Gij ~ p* Poisson(μij * K) + (1-p) * Poisson(μij * K−1) if the gene is under-dispersed

   iv. For all remaining genes (i.e. genes not in the gene set), these genes remain unaltered and follow the patient’s baseline distribution.

  c. For each tumor transcriptome generate a control pathway by randomly sampling a pathway of size m (from GO-BP) and leave its 
expression values unaltered such that the genes in the control pathway follow the patient’s baseline distribution.

 2. Cohort-Based Analysis: Compute a paired t-test for the paired samples across each gene product and detect differentially expressed genes 
(DEGs), labeling a gene DEG if nominal p < .05. Using the DEGs and GO-BP, conduct an enrichment test using Fisher’s Exact Test (FET)[26] 
to obtain the FET pathway prediction for the positive and control pathways, respectively. Adjust p-values for multiple hypothesis testing using 
FDR_BY [25].

 3. Single-Subject Analysis: Perform an N-of-1-pathways kMEn analysis to obtain a pathway prediction (a pair of p-values – one for the 
positive and one for the control pathway) for each patient. Utilize the median of the positive and control pathway predictions to serve as an 
aggregate cohort-level result. Adjust p-values for multiple hypothesis (FDR_BY[25]).
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