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Abstract

The development of computational methods capable of analyzing -omics data at the individual level is critical for the suc-
cess of precision medicine. Although unprecedented opportunities now exist to gather data on an individual’s -omics profile
(‘personalome’), interpreting and extracting meaningful information from single-subject -omics remain underdeveloped,
particularly for quantitative non-sequence measurements, including complete transcriptome or proteome expression and
metabolite abundance. Conventional bioinformatics approaches have largely been designed for making population-level
inferences about ‘average’ disease processes; thus, they may not adequately capture and describe individual variability.
Novel approaches intended to exploit a variety of -omics data are required for identifying individualized signals for mean-
ingful interpretation. In this review—intended for biomedical researchers, computational biologists and bioinformati-
cians—we survey emerging computational and translational informatics methods capable of constructing a single subject’s
‘personalome’ for predicting clinical outcomes or therapeutic responses, with an emphasis on methods that provide inter-
pretable readouts. Key points: (i) the single-subject analytics of the transcriptome shows the greatest development to date
and, (ii) the methods were all validated in simulations, cross-validations or independent retrospective data sets. This survey
uncovers a growing field that offers numerous opportunities for the development of novel validation methods and opens
the door for future studies focusing on the interpretation of comprehensive ‘personalomes’ through the integration of mul-
tiple -omics, providing valuable insights into individual patient outcomes and treatments.
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Introduction

The arrival of precision medicine has led to a more individual-
based view of diseases, with characteristics of single subjects
being central to the prediction of clinical outcomes and pre-
scription of tailored treatments. This concept is not new; in fact,
evidence-based clinical practice guidelines [1] stratify treat-
ments according to some patient characteristics (e.g. gender,
ancestry, age, family history, some laboratory test results).
However, precision medicine differs from the traditional medi-
cal approach, as it seeks to leverage not only clinical variables
and clinician-selected genetic tests but also broad and data-
intensive molecular and general -omics profiles of a patient [2].
These large and heterogeneous data cannot be interpreted
directly by medical practitioners and require an automatic pro-
cedure for extracting relevant knowledge before incorporation
into clinical practice. Therefore, it is fundamental to develop
computational methods aimed at analyzing these data at the
individual level.

Current approaches aimed at analyzing disease or other bio-
logical processes, therapeutic efficacy and -omic data still lever-
age well-established cohort-based population analyses such as
case-control studies [e.g. gene expression classifiers (GExpCs)],
observational trials or controlled intervention trials. These large
cohort/group approaches place emphasis on the group average
rather than individual participants; though this group average
may not represent any actual individual’s personal profile, let
alone be meaningful to understanding the profile of a given spe-
cific patient. On the other hand, the framework of N-of-1 trials
has been applied to repeated measures of a single analyte for
over two decades [3]. This approach is based on the collection of
various relevant data for one person as frequently as possible
[4]. In this way, novel strategies can be explored to compare dif-
ferent treatments of the same person. Moreover, by looking at
commonalities across multiple N-of-1 studies collecting the
same type of data, it is possible to estimate the efficacy of an
intervention in a specific subset population (i.e. people sharing
a particular genetic profile). N-of-1 trials demonstrated their
power to evaluate treatment effectiveness in a single subject for
one variable [5], but proposed approaches for one analyte do not
scale for -omics legion-size data sets.

Although we now have an unprecedented technical opportu-
nity to gather data relating to an individual’s -omic profile, bio-
informatics tools to understand these data comprehensively,
and at the individual level, remain underdeveloped. Novel
approaches for identifying individualized (single-subject)—and
not cohort—signals are required for gathering insights into the
biology of diseases and healthy states of individuals. This
review focuses on computational methods aimed at analyzing
quantitative transcriptomic measurements of an individual and
the combination of transcriptome with other -omic data.

In this review, we define the personalome as an interpret-
able personal molecular mechanism profile of an individual
derived from one or more scales of -omic data, especially when
designed to enable precision medicine. ‘Personal -omics’ means
the -omics measures of a single subject. Molecular mechanisms
are any molecular functions or biological processes such as a
missense mutation in DNA, or a differentially expressed path-
way (DEP) at the transcriptome or proteome. To be considered
interpretable at the molecular mechanism, the raw -omics pro-
file must have been subjected to analyses performing (i) dimen-
sion reduction and (ii) biomolecular interpretation of the
mechanisms involved in molecules of life (Figure 1). For exam-
ple, full genomes are reduced to variant and mutation calls

through analyses against a reference genome, or in the case of
cancer, by also comparing paired cancer and unaffected tissue
to determine somatic versus germline mutations. Here, we
show how differentially expressed molecules of life and path-
ways can be unveiled in a single subject through the analysis of
transcriptome data.

We surveyed emerging novel computational biology, bio-
statistical and translational informatics methods that construct
a single subject’s personalome by analyzing transcriptome data
to predict outcomes or therapeutic responses without requiring
the large cohort needed for conventional approaches.

Our review methodology is detailed in the Supplementary
Material S1. Particular emphasis is placed on those methods
that provide clinically interpretable readouts rather than simple
categorical classification, as the latter are known to be difficult
to reproduce across data sets and contain noisy, incidental and
passenger variation [6–9]. The papers and methods selected for
review reflect the authors’ views and are not intended to pro-
vide an exhaustive search. Figure 2A depicts all considered pub-
lications by year of publication and number of citations, and the
studies are shown with different colors and shapes according to
the type of required data input and output, respectively. Figure
2B shows the number of citations over time.

The review is divided according to the type of data inputs in
the methods (i.e. transcriptome and integrated -omics). A
review of the validations of all methods follows, and finally, we
discuss and conclude with the broad challenges, the applica-
tions and the opportunities in developing a personalome for
precision medicine, i.e. how the single-subject analyses (SSAs)
of -omics data can bring novel insights in disease mechanisms
specific of a patient and unveil potential patient-specific treat-
ments. A table of content for the review is provided in Table 1.

Transcriptome

Transcriptome analysis aims to interpret the quantification of
transcribed genetic material, including both coding and noncod-
ing RNA. Different from DNA, which is relatively static, analyses
of the transcriptome capture the collective impact of tissue
type, sequence variation, regulation, environment, external
stimulation (e.g. drug treatments) and interactions between
them. High-throughput technologies, such as microarray and
RNA sequencing (RNA-Seq), are capable of assessing transcript
expression at genome-scale for an individual sample, with
RNA-Seq providing unbiased detection, broader dynamic range,
increased specificity and sensitivity and easier detection of rare
and low-abundance transcripts.

The transcriptome provides a snapshot of transcriptional
activity under the condition where the RNA was collected,
allowing researchers to study the biological impact of certain
diseases or effect of treatments [10]. This allows us to better
understand general disease mechanisms, discover biomarkers
or identify drug targets at the cohort scale when sufficient
samples are collected, but also has the power to reveal
individual-specific signals, whose detection and analysis
through computational methods can lead to far more precise
medical understanding and decision-making. Analysis of
more than one transcriptome of an individual enables the
assessment of personal dynamic changes over time or in
response to therapy or other environmental changes. Yet,
identifying important individual signals is not a trivial task, as
transcript expression variations in a given tissue and time point
are further modulated by stochastic variability, cyclic patterns
(ex circadian) and platform biases or measurement errors in
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Figure 1. Flow chart of methods designed for clinical interpretation of single-subject -omics. This review addresses the gap of knowledge to compare and contrast sin-

gle-subject methods designed to reduce the dimension of raw -omics data (left) and to provide a biomolecular interpretation of signals (gray rectangle). For DNA

sequencing, variant and mutations calls as well as all functional annotations in single subjects (e.g. missense mutation) already bridge this gap. However, this inter-

mediate step is often omitted for other molecules of life, such as mRNAs, miRNAs, proteins, methylated DNA regions and metabolites (carbohydrates and lipids). This

review focuses on single-subject methods that analyze transcriptome data. ‘Clinical applications’ section provides emerging evidence that the newly available,

unbiased SSA of the transcriptome enable innovative types of studies to investigate their clinical utility by addressing the gap of biomolecular interpretation of raw -

omics signals. Among possible studies, we demonstrate that -omics clinical prediction classifiers that operate directly at the -omics scale may be redesigned for the

parsimonious transformed signal of single-subject studies for improved clinical utility.

Figure 2. SSA studies included in this review. (A) Each numbered point represents a publication plotted by year of publication and the relative number of citations (in

log2 scale). Numbers correspond to the publication in this article’s reference list, colors indicate the type of input required, i.e. one single-subject sample (1 ss

SAMPLE—green), two paired single-subject sample (2 ss SAMPLES—purple) or if the method requires the collection of multiple samples from the same subject (multiple

ss SAMPLES—orange). The shapes represent the type of output provided by the selected studies, i.e. DEGs—circle, DEPs—X. Finally, blue squares indicate methods

based on the integration of transcriptome data with other - omics. (B) Number of citations over time starting from the publication year for the single-subject studies

analyzing transcriptome data. Color and shape codification is the same as for the (A).
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addition to signals, which are truly relevant to the disease state.
The power of the methods reported in this section is that
starting from thousands of genes they are able to provide
information on the key genes and mechanisms (i.e. pathways)
of a disease. This can allow to speed up the planning of future
and effective studies.

Cross-subject transcriptome analyses

Conventional transcriptome analytics require well-powered
cohorts of both cases and controls and describe variation in
transcriptome when comparing two or more classes with a vari-
ety of methods (e.g. t-test [11, 12], analysis of variance [13], lin-
ear mixed models [14], modeling via the negative binomial
distribution [15–17]). These strategies are designed to identify
DEGs of ‘average responses across patients’ under particular
experimental conditions (e.g. disease versus normal; or predrug
and postdrug treatment). To extract more interpretable results,
genes detected as differentially expressed are often further
categorized according to enrichment or membership in knowl-
edge bases such as curated biological pathways or functional
gene sets (e.g. Kyoto Encyclopedia of Genes and Genomes
(KEGG) [18]), Gene Ontology (GO) [19]. In this way, DEPs of aver-
age responses of patients can be identified, providing a more
comprehensible view of the transcriptomic processes under
study versus a simple gene list that requires significant gene
recognition and subject matter expertise for interpretation.
A wide array of studies and tools belong to this category includ-
ing popular ones as gene set enrichment analysis (GSEA) [20]
and DAVID [21]. In general, there are two main strategies to
identify DEPs: (i) gene set-centric (GC) and (ii) pathway-centric
analyses (PC). The GC approach is generally performed in two
steps: first, DEGs are selected and the DEPs are computed by
statistically testing the genes against the background. A critical
limitation of GC strategy is that the results strongly depend on
the DEGs identified in the first step. In fact, small changes in the
DEG analysis may lead to the detection of a slightly different
DEG list that can result in high changes of the identified DEPs.
In addition, the final result is significantly affected by the arbi-
trary cutoff chosen in the enrichment step, as the majority of
statistical test require a P-value threshold [22]. Therefore, we
are providing the minimum number of genes in each gene set
(Figure 5, column ‘Minimum # of transcript per scored gene
set’), as methods providing a higher minimal threshold will be
less susceptible to this bias. However, another limitation com-
mon to all reviewed DEPs is that similar gene sets are not identi-
fied as biomolecularly related in the resulting set, though
postprocessing methods are available to address it [23–25].

The PC strategy is a distinct approach to derive statistics
directly on the pathways without using DEGs. This approach is
more sensitive to a concordant change of expression in the
same direction, even if the transcripts would not be otherwise
identified as DEGs. While more sensitive to directionally dysre-
gulated pathways than GCs, current implementations of PCs are
not designed to identify dysregulated pathways with both upre-
gulated and downregulated transcripts.

However, a limitation when focusing on the identification of
DEPs relies on the selection of the considered prior knowledge
on pathways. Currently, several knowledge sources, such as
KEGG [18], Reactome, [26] and Pathway Common [27] can be used.
This may cause redundancy and different results; moreover, such
data sources may contain incomplete, incorrect or inconsistent
data. Such dependencies between pathways could result in corre-
lated P-values and over dispersion of the number of significant
pathways, leading to biased results [28]. Therefore, future studies
are required to compare the robustness of DEP methods in pres-
ence of noise and missing gene set annotations.

While these approaches for transcriptome analysis are
strong in the right context and if properly powered, only few are
designed to scale down to individuals. For many DEG detection
methods, this failure to scale down to a single subject is an
inherent limitation of the underlying mathematical constructs,
as they rely on a minimum of three replicates to assess
gene-level variance, overdispersion and/or other parameters
requiring multiple subjects. Under most experimental designs,
cross-sample replicates are used, though triplicate samples
from the same individual could potentially be used as a proxy
when these are not resource limiting. Although the cost of
high-throughput sequencing has been declining, it is still
resource-prohibitive to sequence multiple samples, especially
when sample procurement is naturally invasive.

Other conventional approaches for analyzing transcrip-
tomes exploit curated knowledge of a particular disease to
specifically examine validated or hypothesized markers
whose gene expression differs from the reference ‘normal’ or
is expressed above a predetermined threshold. This is the case
for Oncotype DXTM [29], PAM50 [30] and other clinically avail-
able tests that classify samples into tumor subtypes. Reliance
on a predefined panel of genes dodges the problems of dimen-
sionality and signal-to-noise detection in raw transcriptome
data, but limits scalability across multiple characteristics of a
disease and prevents the investigation of novel transcripts
and disease mechanisms. To address these issues, other
clustering-based techniques can be applied to gather pat-
terned genes across/within samples or data sets (for a review,
see [31]) and to obtain classifiers which can then be explored
for within-group commonalities and cross-group differences
[32]. However, they require a large number of samples, as well
as careful external validation in large data sets that have adequate
protection from bias and have been reviewed elsewhere [33].

Single-subject transcriptome analyses

In the context of SSA, several studies have been proposed for
extracting relevant biological knowledge from transcriptome
data without the large cohort requirement. These approaches
can be divided into different categories based on either (i) the
number of samples from the same subject they require or (ii)
the type of output they provide.

As illustrated in Figure 3, single-subject studies can be cate-
gorized into GC (DEGs; Figure 4 and Table 2) or PC (DEPs; Figure
5). Based on this classification, we reported the related studies

Table 1. Table of content of the review

Section Pages

Transcriptome p. 2
Cross-subject transcriptome analyses p. 4
Single-subject transcriptome analyses p. 4
DEGs identification in single-subjects p. 7
DEPs identification in single-subjects p. 8
Longitudinal time series analyses of transcriptome p. 10

Single-subject transcriptome integrated with other -omics p. 11
Validation of single-subject methods p. 12
Clinical applications p. 12
Perspective and conclusion p. 13
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Figure 3. Current strategies to analyze single-subject transcriptomes. Analysis of single-subject transcriptome can be usually divided into two categories based on the

required number of samples: (i) single sample analyses, (ii) paired sample analyses, or (iii) more samples (not shown). They can also be categorized according to their

outputs: (i) Differentially Expressed Genes (DEGs), (ii) Differentially Expressed Pathways (DEPs), or Disease Scores (DSs). Note: DEP*¼not true DEP, rather a relative

expression level of the pathways because there are no references or baseline to compare the pathway expression of a single sample.

Figure 4. Summary of single-subject methods that analyze transcriptome data to identify DEGs. Note: Additional details are available in Table 2.
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in ‘DEGs identification in single subjects’ and ‘DEP identification
in single subjects’ sections, respectively.

The selected studies can be further divided according to the
number of samples involved: (i) analysis of single samples (top
of Figure 3), (ii) analyses of single individuals using paired sam-
ples from the same subject (bottom of Figure 3) and (iii) multiple
measurements in single subjects (not shown in Figure 3). This
last class of methods is reported in ‘Longitudinal time series
analyses of transcriptome’ section.

The utility of single-subject discovery of differentially
expressed patterns is central to precision medicine. For exam-
ple, implicating DEGs in a patient may identify an unconven-
tional treatment (i.e. personal drug repositioning) for this
disease, assuming that these DEGs are well-established targets
of the drug [52] in another related disease state (e.g. cancer tar-
gets). On the other hand, if the aim of the study is to investigate
a disease or a particular condition from a broader point of view
and to promote greater interpretation of the gene expression
results, DEP analyses should be preferred. For example, Figure 5
refers to methods directly imputing DEPs from the

transcriptome, i.e. PC approaches. To the best of our knowledge,
these methods have not been compared with enriching DEGs
into DEPs using methods from Figure 4. However, these DEP
methods have been evaluated in vitro and in vivo as shown in
the last section of the article, thus remain the validated strategy
for imputing DEPs until properly compared with single-subject
DEGs followed by enrichment.

Another key difference in the analysis of single-subject tran-
scriptome is the number of samples required from the subject.
In addition, we have found that successful single sample-meth-
ods require not only the individual sample but also a cohort
reference (‘reference-based’) to perform comparisons and to
detect DEGs or DEPs (Figures 4 and 5, column ‘Cohort reference
size’). This type of strategy is particularly useful when matched
normal and disease samples are unavailable or limited (e.g.
brain or heart tissue samples).

Analysis of individuals using paired samples naturally
requires that both samples be drawn from the same subject. As
samples are isogenic aside from potential somatic variation
and/or taken from the same tissue and environmental context

Table 2. Additional details on single-subject transcriptome analyses of DEGs

Publication Name Description

Wang et al. [34] RankComp RankComp requires two inputs: (i) a disease sample and (ii) a set of accumulated normal samples, which
can be can be accrued during the same experiment or a priori from various external resources.
RankComp begins by ranking genes within the samples (both the case and the normal) according to
increasing expression values. Next, pairwise rank comparison are performed to identify (a) stable gene
pairs, and (b) reversal gene pairs. Stable gene pairs are defined as those with the same ordering in 99% of
the accumulated normal samples [expressiongeneA > expressiongeneB] while reversal gene pairs are
identified by disruption of that ordering in the disease sample [expressiongeneA < expressiongeneB].
Fisher’s exact test is conducted to test the null hypothesis that the numbers of reversal gene pairs
supporting its upregulation or downregulation are equal. This procedure enables extraction of a list of
DEGs for a single subject, and interpretable results can be obtained through manual examination or by
performing gene set enrichment analyses

Liu et al. [35] DNB Computational approach based on DNB theory to detect pre-disease states
Wang. et al. [36] DEGseq DEGseq identifies DEGs using RNA-Seq data collected from a single subject. When replicates are not avail-

able, the authors suggest a MA-plot-based method with a random sampling model, which assumes the
expression counts follow a binomial distribution. Given the average of log2-transformed expression
levels, it approximates the log2 expression fold change by a normal distribution, and then calculates a
Z-score based on this distribution. P-values are computed based on Z-scores

Tarazona
et al. [37]

NOISeq NOISeq is a data-adaptive and nonparametric approach, which has a variant, NOISeq-sim, that works
without replicates. NOISeq-sim uses simulated replicates when real replicates do not exist. It simulates
replicates under the assumption that gene expression counts follow multinomial distribution in which
the probability of each gene corresponds to the probability of a read mapping to that gene. The proba-
bility of each gene is estimated by the proportion of its read counts relative to the total number of
mapped reads from the only sample under the corresponding experimental condition. With the simu-
lated replicates, NOISeq-sim generates a joint null distribution of fold-changes (M) and absolute differ-
ences (D) of the expression counts from the replicates within the same condition. This joint null
distribution is then used to assess differential expression by gene‘s (M, D) pair computed between
conditions

Feng et al. [38] GFOLD This method assumes a Poisson distribution (k) for the gene expression counts and a uniform prior distri-
bution for k. After computing a posterior distribution of k for each gene, GFOLD ranks gene expression
changes of all genes based on the cth percentile of these posterior distributions, where c is determined
by users. In this way, it penalizes genes with low expression levels for their larger variances

Anders et al. [39] DESeq When neither condition (i.e. affected and control sample) has replicate transcriptomes, DESeq assumes
the majority of the genes as non-DEGs and estimates a mean–variance relationship from treating the
two samples as if they were replicates [33]

Robinson et al. [17] edgeR edgeR assumes that RNA-Seq data follow negative binomial distribution for which, given the mean, the
variance is determined by a dispersion parameter. When working without replicates, edgeR assigns the
same value of the dispersion parameter to all genes and conducts a negative binomial exact test to
compute P-values. Note that the value of dispersion is predetermined based on investigators’ under-
standing of the biological nature of the samples rather than estimated from data [18]
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aside from any experimentally induced stimuli, this design
increases the signal-to-noise ratio and improves the detection
of relevant DEGs or pathways. For example, studying both
tumor and non-tumor tissues from a cancer patient focuses
attention on pathogenic and compensatory mechanisms that
differentiate the two tissues because of the disease state.

While we review the methods that strive to mine the most
information from limited data (e.g. a pair of transcriptomes of a
single subject), investigators need to be cautious that methods
do not replace data [53].

An additional aspect we underlined is the requirement of
user-defined parameters heuristics of the considered publica-
tions heuristics (Column 8 in Figures 4 and 5). Automated meth-
ods, not requiring user-defined parameters, are considered
superior, as they are less biased and more convenient.

The following subsections will focus on methods for imput-
ing single-subject DEGs (‘DEGs identification in single subjects’
section) and then single-subject DEPs (‘DEP identification in sin-
gle subjects’ section).

DEGs identification in single subjects

In this section, we outline and describe emerging studies aimed
at extracting DEGs starting from: (i) one sample of the individual
and (ii) paired samples drawn from the same subject. A detailed
description of the methods is provided in Figure 4 and Table 2.

Approaches based on a single sample of an individual
We identified two single-sample methods ([34, 35]) designed to
inform on an individual’s transcriptome aberrations. Both
methods require the application of a cohort reference, but differ
in their predicted outputs. The first one, called RankComp [34],
identifies DEGs by comparing the gene expression of the
affected sample with a baseline, akin to a reference genome or
normal range for clinical testing. RankComp has been applied
separately to both total mRNA and microRNA (miRNA) investi-
gations [54]. In the second study, they demonstrated the power
of their method to identify deregulation of miRNAs and miRNA–
target pairs with mutually exclusive alterations. This approach
has the limitation of not being sensitive enough for detecting

Figure 5. Summary of single-subject methods that analyze transcriptome data to identify DEPs.
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genes whose differentially expression causes minor changes in
the ranking. The second method [35], DNB (Figure 4), different
from RankComp, predicts critical disease transition from one
sample of an individual, by comparing it with multiple control
samples (from other data sets). This type of approach is particu-
larly interesting for investigating individual profiles and classi-
fying them as healthy, pre-disease or disease state.

Approaches based on paired samples of an individual
Although DEG identification often requires a large cohort of
samples, a few attempts have been made to identify DEGs from
only a pair of transcriptomes. These methods provide an oppor-
tunity to identify a set of personalized DEGs of a single subject
without requiring costly transcriptome replicates. Among these
methods, DESeq [39] and edgeR [17] were originally designed as
cohort-based methods (Figure 4, column ‘Designed for ss’), but
have wide applications. When replicates are not available, these
two methods can still be applied. Without replicates, DESeq is
conservative, as it assumes the majority of the genes as non-
DEGs and estimates a mean–variance relationship from treating
the two samples as if they were replicates. edgeR’s performance
relies on investigators’ understanding of study, as a parameter
in the model is predetermined by the biological nature of the
samples. DEGseq [36] is designed for discovering DEGs from
only a pair of transcriptomes; yet, its assumption of binomial
distribution of RNA-Seq data is insufficient when overdisper-
sion in gene expression is present. NOISeq-sim [37] simulates
replicates when real replicates do not exist. With the simulated
replicates, NOISeq-sim generates a joint null distribution of
fold-changes (M) and absolute differences (D) of the expression
counts from the replicates within the same condition. This joint
null distribution is then used to assess differential expression
by a gene’s (M, D) pair computed between conditions. Finally,
GFOLD [38] is another method designed for transcriptome anal-
ysis without replicates, as it provides biologically meaningful
gene ranks of differential expression, but no significance
assessment.

DEPs identification in single subjects

In this subsection, we report other methods that create biologi-
cally interpretable results from a single subject’s transcriptome
bypassing detection of significant differences in gene-level
expression to go directly to pathway-level signals (DEPs). Such
analyses aim to promote a higher-level interpretation of the
underlying gene expression data, providing a holistic view of
pathway perturbation, instead of focusing attention on any par-
ticular gene. All the approaches belonging to this category
incorporate a large body of prior biological knowledge (e.g. path-
way knowledge sources such as KEGG [18, 55]). This allows
researchers to reduce the dimension of a transcriptome-wide
gene list (�22k in human) to a much smaller set (e.g. �5000 GO-
BP terms) which is then analyzed according to term or pathway
overrepresentation or other involvement. This dimension
reduction has been showed to improve the prediction of prog-
nosis and therapies [56, 57]. A detailed description of the meth-
ods is provided in Figure 5 and Table 3.

Approaches based on a single sample of an individual
We identified three methods that require a single sample of an
individual and a cohort reference (individPath [41], Pathifier
[43], individualized pathway aberrance score, iPAS [42]) and two
approaches capable of extracting DEPs from within an individu-
al’s transcriptome without external comparison (single-subject

GSEA, ssGSEA [45], Functional Analysis of Individual Microarray
Expression, FAIME [44]) (Figure 5). A detailed description of the
methodologies used by these studies is provided in Table 3.

Each of the reference-based methods begins by aggregating
gene-level information into pathway-level information, provid-
ing meaningful dimension reduction, and then apply statistical
analyses directly at the pathway level. The first method,
individPath, uses relative expressions orderings to directly
stratify patients based on individual deregulated pathway sta-
tus. The authors showed that individPath could predict individ-
ually identified, but in-common pathway biomarkers from lung
adenocarcinoma and breast cancer data sets that were corre-
lated with survival analysis.

The second method is Pathifier, which computes pathway
deregulation scores (PDSs—Table 3) for SSA using principal
component analysis (PCA) and curve fitting. Drier et al. [43]
showed how PDSs successfully reflect deregulation of pathways
in glioblastoma and colorectal cancer data sets and could pro-
vide clinically relevant stratification of patients. Pathifier has
also been successfully applied to provide a classification of
breast cancer subtype [59] and to perform a personalized analy-
sis for understanding the status of homologous recombination
pathway dysregulation in breast cancer [60].

Finally, an additional method proposed by Ahn et al. [42]
quantifies the aberrance of an individual sample’s pathways by
comparison with accumulated normal data. The authors pro-
vide gene-level statistics (i.e. Z-score) by standardizing the gene
expression level of the disease sample with the mean and the
SD of the normal samples.

DEP approaches requiring a cohort reference, such as iPAS,
Pathifier and individPath, are constrained by (i) the number of
available normal samples (power), (ii) platform-dependencies
and (iii) limited sensitivity to detect pathways that contain only
few genes. The large number of normal cohort sample required
limits the applicability of these methods in infrequent diseases,
or when obtaining appropriate samples and/or defining an
appropriate ‘normal’ state is complex. Moreover, the reference
cohort may be heterogeneous, and pooling together normal
samples means that transcriptome of different individuals is
merged, which can obscure stratification and correlation pat-
terns in the normal data.

Because of these limitations, other methods have been pro-
posed to circumvent the normal reference requirement using
solely a sample from the subject under study. These strategies
aim to reduce dimension by injecting domain knowledge while
reducing gene-level noise inherent to a single case sample. Two
such methods are the FAIME [44] and ssGSEA [45]. Both methods
seek to quantify the effect size and statistical significance of
consistent overexpression or underexpression of aggregated
gene expression within externally defined gene sets, compared
with the genes not annotated to the gene set (background). In
the terminology of Goeman and Buhlmann [61], this framework
is ‘competitive’ in the sense that scores reflect relative gene set
expression when compared with the background. In this man-
ner, both FAIME and ssGSEA detect aberrant pathway expres-
sion for an individual’s sample. The methods differ in
implementation, however; FAIME operates on the normalized
gene expression, while ssGSEA performs calculations on the
ranks.

A limitation of these two methods is that they provide a
ranking of pathways in terms of their deregulated with respect
to other pathways using the gene expression data of the indi-
vidual (e.g. more or less expressed than an average expression).
Therefore, these methods do not identify functionally altered
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Table 3. Additional details on single-subject transcriptome analyses of DEPs

Publication Name Description

Wang et al. [41] IndividPath IndividPath computes REOs from a pathway point of view reducing the dimension of the sam-
ple representation. Patient-specific DEPs of a sample are obtained by applying a similar pro-
cedure to RankComp [35], in which REOs in an individual sample are compared with the
highly stable REOs identified from a large cohort of normal samples. The authors identify the
biological pathways with significantly disrupted ordering of gene expression via P-values. In
this case, P-values are determined by testing whether the frequency of reversal gene pairs
observed in a sample within each pathway is significantly greater than that expected by
chance using the hypergeometric distribution model (i.e. a Fisher’s exact test)

Drier et al. [43] Pathifier Pathifier has been developed to compute PDSs for cancer tumor samples by aggregating gene-
level information into pathway-level information, providing meaningful dimension reduc-
tion. Pathifier analyzes one pathway at a time and assigns a PDS to each sample by using the
expression levels of the genes belonging to the pathway. To calculate PDSs, a PCA is per-
formed to reduce the dimensions and capture the variation of the data. Next, the method
identifies the best principal curve using both cohort samples (normal and disease). Then, the
PDS of a sample is obtained by computing the distance of a single sample from the median
of the normal samples on the principal curve. The output of this approach is therefore a list
of DEPs for each sample representing the level of deregulation of each pathway

Ahn et al. [42] iPAS iPAS provide gene-level statistics (i.e. Z-score) by standardizing the gene expression level of the
disease sample with the mean and the standard deviation of the normal samples. Z-scores
are used as inputs to calculate iPAS for the disease sample, for example, using the average of
the Z-scores in a pathway. iPAS is then computed for every normal sample to construct a
null distribution, which assesses the significance of disease iPAS’s deviation from the nor-
mal reference.

Yang et al. [44] FAIME The FAIME transforms a vector of mRNA quantification into pathway-level metrics derived
from a single biological sample. Each mRNA is annotated to a gene, and genes are annotated
to gene sets via knowledge base integration. Every pathway receives a score that quantifies
the ‘average’ over-expression of genes within the pathway, when compared with genes in
background (not in the pathway). This process provides mechanism-level interpretation to a
single transcriptome.

Barbie et al. [45] ssGSEA ssGSEA uses the difference in empirical cumulative distribution functions of gene expression
ranks inside and outside a gene set (i.e. pathway) to calculate an enrichment statistic per
sample, akin to the FAIME methodology described above. The procedure adopted is similar
to GSEA [21] except that ssGSEA uses gene expression intensity at the single sample level to
compute enrichment scores

Gardeux et al. [46] N-of-1 pathways
Wilcoxon

This method aggregates gene expression values from two paried samples into gene sets pro-
vided by external knowledge sources (e.g. GO, KEGG). Each externally defined gene set is
assessed for differential expression using the nonparametric analog of a paired t-test, the
Wilcoxon signed-rank test. The result is a metric of pathway-level dysregulation in the form
of either a P-value or corresponding signed z-score (sign indicates whether the case sample
is upregulated or downregulated compared with baseline sample). Computing such a metric
across all pathways in an ontology provides a mechanistically anchored profile of personal
transcriptome dysregulation for each patient

Schissler et al. [47] N-of-1 pathways MD N-of-1-pathways MD seeks to improve the differential expression testing component of the
framework introduced by Gardeux et al. [58]. The rationale behind using the statistical gener-
alization of distance is to incorporate the observed covariance structure between the two
paired samples (as they are derived from the same patient). Briefly, the average log2 fold-
change of expression within the pathway is adjusted using components of the variance–
covariance matrix. Then, a nonparametric bootstrap is performed to estimate the standard
error of the pathway average expression. This provides pathway metrics that are more clini-
cally relevant than a Wilcoxon test statistic and simulation studies showed increased power
under the MD framework

Schissler et al. [48] ClusterT The Cluster-T is yet another improvement to the differential test procedure of N-of-1-path-
ways. It was shown that under nontrivial inter-genetic correlation, the bootstrapping proce-
dure of the MD failed to produce adequate estimates of the standard error of the average
log2 fold-change of expression. This problem proved to be challenging without bringing in
external knowledge of context-specific gene–gene correlation. With this external knowledge,
genes are clustered within pathways and, under certain assumptions, the test statistic was
shown to follow a t-distribution with degrees of freedom dependent on the number of clus-
ters. In novel multivariate gene expression simulations, the Clustered-T showed far superior
performance in false-positive rates

Li et al. [50] N-of-1-pathways
MixEnrich

N-of-1 pathways MixEnrich improves both N-of-1 pathways Wilcoxon and MD by detecting
DEPs when they are bidirectionally dysregulated and/or background noise is present. Both

Continued
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pathways against a reference as in the previous methods
because a pathway more or less expressed than average may
the normal expected level of expression of that pathway.

The output of both ssGSEA and FAIME report DEPs, which
allow enhanced functional interpretation of disease-associated
biological processes relative to less readily interpretable lengthy
lists of DEGs. This approach could be useful when little patho-
logical knowledge is available for the disease or when substan-
tial pathway heterogeneity may underlie the clinical
phenotype. In the case of single-subject studies, DEP lists can be
used not only to investigate biological mechanisms specific of
certain patients but also to suggest potential treatments or
combination of treatments based on gene products annotated
to the pathology-associated DEP, or other known interactions.

Approaches based on paired samples of an individual
In the following, we will focus on single-subject-based methods
that analyze paired samples without the requirement of repli-
cates. In this category, we identified the methods known as N-
of-1-pathways (Figure 5 and Table 3). These methods provide a
statistical informatic approach by aggregating gene-level meas-
urements from two samples into gene sets (pathways) provided
by curated knowledge bases (e.g. GO, KEGG). This consolidation
seeks to reduce noise from gene-level measurements and pro-
vide meaningful dimension reduction. These profiles are
designed to have clinical translational value by providing a sys-
tems biology perspective instead of focusing on single bio-
markers. A drug targeting a non-DEG product at first glance
could seem useless. However, the pathway could yet to be dys-
regulated and the drug may still have therapeutic value. For
example, an epithelial growth factor receptor inhibitor (erloti-
nib) was successfully used in dual therapy to abate pathway-
wide overexpression in oral carcinomas [58].

The first transcriptome analytic framework for quantifying
within-patient differential expression from a pair of samples
was introduced by Gardeux et al. [46] that developed the N-of-1-
pathways Wilcoxon. Schissler et al. [47] extended the analysis of
within-patient paired samples with the N-of-1-pathways
Mahalanobis distance (MD) to improve on the Wilcoxon-based
approach. MD provides an effect size of pathway-differential
expression that incorporates the variance–covariance structure
between the two samples. However, MD’s testing procedure
failed to account for inter-gene correlation within pathways,
which could result in the inflation of false-positive rates [48]. In
response to this shortcoming, Schissler et al. [48] developed

ClusterT to estimate co-expression of genes within the relevant
biological context. For example, TCGA breast cancer RNA-Seq
samples could be used to characterize clusters of genes within
pathways, with positively correlated genes within the same
cluster. This approach bears similarities to the ‘accumulated
normal sample’ strategy described above, but differs in the way
that an ontology is characterized by clusters within the context
of analyzing a single subject’s pair. The authors envision
co-expression cluster-augmented knowledge bases to enable
clinical translation without the additional burden of accumulat-
ing ad hoc normal samples. N-of-1 pathway Wilcoxon, MD and
the Clustered-T approaches perform gene set testing, one path-
way at a time, in a ‘self-contained’ fashion [61]. This offers an
opportunity for small-scale gene expression testing, as whole-
transcriptome measurement is not required.

Seeking gene set test procedures in the paired-sample set-
ting that explore pathway-level expression relative to the rest of
the transcriptome (i.e. a ‘competitive’ test), Li et al. developed
two procedures, N-of-1-pathways k-Means Enrichment (kMEn)
[49] and Mixture-Enrichment (MixEnrich) [50]. The benefits of
the techniques lie in the detection of bidirectional pathway dys-
regulation (mRNAs within the same pathway that are both
overexpressed and underexpressed) and in noisy samples with
a high frequency of DEGs.

All the N-of-1 pathways methods showed their power in the
identification of DEPs that result from diverse health disorder
[46, 47–50].

Longitudinal time series analyses of transcriptome

Biological processes are highly dynamic, and understanding
how diseases evolve over time can reveal factors involved in
determining the disease status, progression and compensation.
However, -omic technologies are typically gathered at infre-
quent or even single static points. Comprehensive longitudinal
-omics data (i.e. one or more type of omics measured over time)
can provide key information for understanding the whole evo-
lution of biological processes and underlying biological mecha-
nisms. Comprehensive longitudinal analyses are typically
limited by the substantial associated costs of sample collection
and patient follow-up. As a result, with perhaps rare exceptions,
long time series experiments have few or no isogenic replicates
in single subjects. Traditional analysis of time series gene
expression data aims at identifying gene sets that exhibit com-
mon or distinct patterns of expression between two or more
conditions (i.e. gene modification, treatment). The

Table 3. (continued)

Publication Name Description

Wilcoxon and MD are not designed to detect dysregulated pathways with upregulated and
downregulated genes (bidirectional dysregulation), which are ubiquitous in biological sys-
tems. MixEnrich identifies bidirectional dysregulation by first clustering genes into upregu-
lated, downregulated and unaltered genes. Subsequently, MixEnrich identifies pathways
enriched with upregulated and/or downregulated transcripts. The enrichment test per-
formed by MixEnrich detects only pathways with a significantly higher proportion of dysre-
gulated genes with respect to the background. It is therefore more robust in presence of
background noise (i.e. a large number of dysregulated genes unrelated to the phenotype)

Li et al. [49] N-of-1-pathways
kMEn

N-of-1 pathways kMEn further improves the N-of-1 pathways MixEnrich method by using a
nonparametric model (i.e. k-means clustering) to cluster genes into upregulated, downregu-
lated and unaltered clusters. The distribution of log2 fold-change of gene expression is com-
plex and may vary from experiment to experiment. Hence, a nonparametric model might be
more flexible to model that distribution

REOs¼Relative expression orderings.

10 | Vitali et al.

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bbx149/4758622
by University of Arizona user
on 21 February 2018

Deleted Text: ,
Deleted Text: ,
Deleted Text: I.D.2 
Deleted Text: ,
Deleted Text: differentially expressed gene
Deleted Text: utilized 
Deleted Text: 55
Deleted Text: 56
Deleted Text: 57
Deleted Text: up
Deleted Text: -
Deleted Text: false 
Deleted Text: 58
Deleted Text: 58
Deleted Text: &hx2018;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: 54
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: -
Deleted Text: 59
Deleted Text: 60
Deleted Text: -
Deleted Text: -
Deleted Text: 56
Deleted Text: I.E 
Deleted Text: ,
Deleted Text: &hx2018;
Deleted Text: &hx2018;
Deleted Text: ,


computational complexity to analyze such data is higher, as
time course data involves the three dimensions of gene, time
and condition. When considering time series data from an indi-
vidual, several strategies can be applied depending on the
experimental setup (i.e. number of time points and condition
considered). For example, baseline comparisons can be per-
formed by considering samples gathered during ostensibly
healthy physiological states of the patient as the reference pop-
ulation if multiple time points are sampled. Samples gathered
during ostensibly healthy physiological states of the patient
approaches to extract meaningful knowledge from time series
transcriptome data are based on clustering algorithms [62], hid-
den Markov models [63], Gaussian processes [64] or Bayesian
approaches [65] (for a review, see [66, 67]). These techniques can
be applied for single-subject transcriptome analysis to extract
DEGs or gene expression trajectory patterns from multiple
experimental conditions where multiple time points are
studied.

However, when replicates are not available, few models
have been proposed for the identification of DEGs or DEPs from
longitudinal data. In Figure 4, we reported a method [40] aimed
at extracting DEGs from time series data, i.e. gene whose
expression changed significantly with respect to time. Wu et al.
[40] propose a nonparametric method that integrates a func-
tional principal component analysis (FPCA) into a hypothesis
testing framework to extract gene-specific expression trajecto-
ries. As this approach is based on FPCA, the user has to select
the number of the first principal components that can explain
the data. Therefore, the selection of such parameters can affect
the overall results. On the other hand, Martini et al. [51] devel-
oped an approach to extract time-dependent pathways (DEPs)
without the requirement of replicates (Figure 5). This method
combines dimension reduction and graph decomposition
theory. It first extracts time-dependent pathways and decom-
poses them into cliques to isolate the time-dependent portion.
Although this approach is tailored to time course gene expres-
sion data without replicates, it does not provide information
about the directionality of the identified DEPs. Its output is the
activation versus non-activation of a pathway. Moreover, it has
been designed specifically for long time series data, not showing

statistical power with short time course data. Therefore, it can-
not be applied to investigate biological processes involving
small time series (generally short-term) responses.

One of the major limitations of all transcriptome analyses
is their inability to fully capture the dynamics of the
represented system because of, for instance, posttranscriptional
modifications. To this end, analysis of the product of transcrip-
tome can provide significant insights and source of
information.

Single-subject transcriptome integrated with
other -omics

In this section, we will report the state of art of current analy-
ses aimed at analyzing the transcriptome combined with other
-omics for SSA. The retrieved studies are summarized in
Figure 6.

The integration and analysis of different high-throughput
molecular assays and data is one of the major topics in preci-
sion medicine for understanding patient-specific variations.
This approach enables the possibility of obtaining a comprehen-
sive view of the genetic, biochemical, metabolic, proteomic and
epigenetic processes underlying a disease that, otherwise, could
not be fully investigated by using single -omics approaches. The
increased power of multi-omics studies have been already
assessed in the understanding of diseases, biomarkers and drug
discovery. These methods are based on supervised or unsuper-
vised machine learning techniques and typically aim at classify-
ing patients into cancer subtypes [70–74] or are designed for
drug repurposing [73, 75, 76]. Even if these strategies are useful
for precision medicine, they are not able to extract meaningful
knowledge on individual-specific biological mechanisms. They
still rely on the integration of -omics profiles from populations
of subjects.

In our review of the literature, only few computational
single-subject algorithms aimed at analyzing transcriptome
data combined with other -omics have been proposed in the
past years. Chen et al. [77] pioneered an ambitious project to
integrate, analyze and provide clinically interpretable results
from multi-omics profiles of an individual. The authors

Figure 6. Summary of single-subject methods that analyze transcriptome data combined with other -omics.
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proposed the integrative personal -omic profile (iPOP), using
Dr Snyder’s -omics as a test case colloquially referred to as the
‘Snyderome’. iPOP combines genomic, transcriptomic, proteo-
mic, metabolomics and autoantibody profiles collected from a
single subject over a 14-month period. A key aspect of this
study, other than the focus on collecting data from a single
person, was its comprehensive longitudinal nature and sam-
pling during a variety of incidental environmental exposures
including two viral infections and physician-recommended
diet changes. This resulted in 3 billion measurements taken
over 20 time points and >30 TB of data [77]. The article con-
firmed that some disease risks could be assessed from the
genome sequence of the patient, but actual onset and assess-
ment of certain other diseases, such as hypertriglyceridemia,
could not be diagnosed based only on the genomic profile.
Interestingly, proteome and metabolome were also required to
understand the biological mechanisms underlying response to
the viral infections. Association between expression and dis-
ease status was also revealed through the analysis of tran-
scriptome data.

PARADIGM [78] integrates transcriptome and DNA CNV data
to compute pathway scores that represent the alternation of a
person’s pathways. Pathway scores are calculated as a joint
probability of a directed factor graph, a form a probabilistic
graphical model. Variables in the graphical model correspond to
different molecular entities; edges in the graph represent
within- or between-scale interactions. The interactions are
determined by central dogma and knowledge of annotated
pathways, such as pathway interaction database [77].

Validation of single-subject omics methods

We further classified each publication in this review according
to the method(s) used for result validation (Table 4). The major-
ity of approaches have been validated with in silico simulation of
data or by cross-validation in the same data set. A few methods
have validated their results across replicate samples, or have
had pathology-associated DEG or DEP results successfully repro-
duced in independent data set. To our knowledge, only the N-
of-1pathways W [46] SSA method has been validated in vitro and
as a prognostic outcome classifier in a prospective study. In that
study, patient-specific DEPs were identified in response to an ex
vivo stimulation of their PBMCs with rhinovirus and used to
accurately predict risk of asthmatic exacerbation in those same
patients over a 2-year follow-up period. This strongly supports
the conclusion that the field of single-subject studies of person-
alomes is an emerging field that is in need of more rigorous vali-
dations for translation to clinical practice. Additionally, new
validation strategies need to be developed for in vivo and clinical
trial validations of personalome imputations.

Clinical applications

To better understand the requirement for single-subject studies,
we revisit the types of approaches and transformations
required for clinicians to interpret the more clinically used
method of DNA sequencing. As shown in Figure 1, we high-
lighted the critical steps for clinical interpretation of DNA
sequencing. The full genome of 3.5 billion base pairs is eval-
uated against reference genomes to identify the single-subject
variants and mutations, yielding a substantial dimension
reduction as well as a transformation from molecular data to a
biomolecular interpretation of the sequence. Additional studies
provided external knowledge for clinical interpretation. For

example, missense and nonsense mutations are known to
affect the host genes, many of which are known to lead to
Mendelian diseases annotated in OMIM [78]. Reproducible
genome-wide association studies led to the creation of the
NHGRI Catalog that annotates the disease risk associated to cer-
tain single-nucleotide polymorphisms. In other words, for
DNAseq, an SSA (intermediate step of mutation and variant
calls) precedes clinical utility studies. However, this has not
been the case for the majority of the studies at other omics
scales.

This review focuses on comparing and contrasting SSA that
incorporates this previously unavailable intermediate step for
other molecules of life, such as mRNAs, miRNAs, proteins,
methylated DNA regions and metabolites (carbohydrates and
lipids). For example, oncologists already use assays for deter-
mining expression fold change and protein function of onco-
genes and tumor suppressors through the comparison of tumor
tissue with external references or unaffected paired tissue. As
these curated approaches may not scale to the full omics data
for other diseases, we provide emerging evidence that the
newly available unbiased SSA enables new types of studies
investigating their clinical utility by addressing the gap of bio-
molecular interpretation of raw omics signal. Among possible
studies, we demonstrate that omics clinical prediction classi-
fiers that operate directly at the omics scale may be redesigned
for the parsimonious transformed signal of single-subject stud-
ies for improved clinical utility. For example, Gardeux et al. [79]
quantified the personal pathway-level transcriptomic response
of peripheral blood mononucleocytes to rhinovirus ex vivo and
trained a classifier predictive of children prone to asthma exac-
erbations. The dimension of the signal was reduced from the
entire transcriptomes of paired samples in 20 subjects (�106

data points) to the effect size of statistically significant respon-
sive pathways in at least one subject (�104 data points).

While many unbiased fully specified GExpCs designed over
the entire transcriptome have been published in peer-reviewed
journals, few have been FDA approved because of their lack of a
mechanistic relationship between the features (gene tran-
scripts) and the disease progression [6, 80, 81]. Two additional
important limitations of the clinical utility of conventional
GExpCs include (i) their platform dependence that limits their
face-value validity (e.g. specific to AgilentTM) [8], and (ii) dis-
tinct GExpCs are paradoxically obtained from distinct cohorts of
the same phenotypes [6, 8]. Interestingly, the transformation of
a signal from conventional raw gene expression to effect size
obtained after DEP-type SSA enables us to address these three
limitations. First, SSA generates an effect size and P-value for
each subject, analogous to mechanisms-level features ascribed
to a patient. In addition, Zhang et al. [44] have shown that the
FAIME DEP transformation leads to the rediscovery of at least
50% of the same gene set-level features (KEGG, GO) in seven dis-
tinct data sets of head and neck cancers when learning fully
specified gene set-level classifiers (GenesetCs). The discovered
features were consistently predictive of disease progression in
independent validation data sets. Furthermore, three studies
demonstrated that the discovered GenesetCs overlap by >50%
of gene set features across expression platforms (Affymetrix,
Agilent, RNAseq) [44, 82, 83], thus addressing another limitation
of GExpC. Finally, a recent report from Gardeux et al. [79] shows
that DEP single-subject studies in paired samples could gener-
ate features of higher quality than those obtained directly from
gene expression in small cohorts. Specifically, a GenesetC pre-
dictive of exacerbation of pediatric asthmatic patients was con-
firmed in an independent cohort (learning set 40 subjects,
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validation set 22 subjects). This study suggests that SSA could
reduce the cohort size for classifier development, as conven-
tional GExpCs generally require hundreds of subjects in their
learning sets.

Perspective and conclusion

The development and analysis of personal transcriptome inter-
pretation are essential for precision medicine, as therapeutic
decision-making pertains not exclusively to genomic sequences
but to Genome x Environment interactions (GxE) as well. For
example, isogenic twins may experience different diseases
because of their distinct environment exposures, despite shar-
ing identical genomes. Even in the presence of the same dis-
eases, their therapeutic responses may vary as a result of other
GxE conditions [79, 84]. The analysis of single-subject transcrip-
tomes is valuable for extracting useful knowledge to better
understand individual variability and patient-specific mecha-
nisms underlying a disease and for suggesting tailored thera-
pies. Selecting the best method for evaluation of a given
subject’s personalome is first dependent on the biological ques-
tion and experimental design approach that is best suited for
determining an answer.

This review revealed that ongoing advances in high-
throughput technologies, emerging research and clinical ques-
tions urge continued investigation and development toward
experimentally validated methods for unveiling tailored treat-
ments from patient-specific transcriptomes (Table 4). In recent
years, this nascent field of single-subject -omics has demon-
strated considerable growth as reflected by the number of
approaches being published and underlined by the high number
of citations for the earlier works (Figure 2). Figures 4, 5 and 6
detail the computational analysis options that are available for
transcriptome data and the sampling regimens that each

requires to be applied effectively (e.g. single sample, paired
samples, longitudinal samples), as well as whether access to an
appropriate external reference database is necessary or what
type of output is provided (e.g. DEGs or DEPs). Each broad cate-
gory of currently available methods has both advantages and
limitations.

Approximately half of the bioinformatics methods we sur-
veyed perform a comparison between the single subject’s pro-
file and a reference, most often a cohort of accumulated normal
samples or samples of a well-defined disease subtype [34, 35,
41–43]. These methods are generally able to capture patient var-
iability and provide clinically interpretable results. However,
accumulating the reference may be challenging and not factor
in the heterogeneity of the reference sample, and subtle effects
may be difficult to detect. This may result in missing crucial
alterations present in the patient profiles. Nonetheless, these
methods are appropriate when a robust reference is obtainable,
and/or cases where a paired sample design does not make
sense.

Recommended DEG and DEP approaches to SSAs

As transcriptomes vary by cell type and with environmental
exposures, clinically or biologically interpretable altered mecha-
nisms are more convincing when developed in isogenic (same
subject) conditions than in heterogenic ones. We thus recom-
mend clinical or experimental designs that generate a baseline
in the same individual, i.e. paired samples (Figures 1, 2 and 5),
which are well evaluated (Table 4) and have been validated in
many publications (Figure 2). At this point in time, multi-omics
methods have not been evaluated sufficiently to recommend
one over another, even though they have the potential for being
the best methods. Among analytical techniques exploiting a
baseline, the more measures the better; thus FPCA and timeClip

Table 4. Summary of the method validation in single subjects

Publication Method In silico
validation

Real dataset
validation

Independent
dataset validation

In vitro
validation

In vivo
validation

Clinical trial
validation

Transcriptome
Gardeux et al. [46] N-of-1 pathways W � � � � � �
Wang et al. [36] DEGseq � � � � � �
Anders et al. [39] DESeq � � � � � �
Feng et al. [38] GFOLD � � � � � �
Wang et al. [34] RankComp � � � � � �
Yang et al. [44] FAIME � � � � � �
Drier et al. [43] Pathifier � � � � � �
Li et al. [50] N-of-1 pathways MixEnrich � � � � � �
Li et al. [49] N-of-1-pathways kMEn � � � � � �
Schissler et al. [47] N-of-1 pathways MD � � � � � �
Liu et al. [35] DNB � � � � � �
Wang et al. [41] IndividPath � � � � � �
Ahn et al. [42] iPAS � � � � � �
Schissler et al. [48] ClusterT � � � � � �
Tarazona et al. [37] NOISeq � � � � � �
Robinson et al. [17] edgeR � � � � � �
Wu et al. [40] FPCA � � � � � �
Barbie et al. [45] ssGSEA � � � � � �
Martini et al. [51] timeClip � � � � � �
Multi-omics
Vaske et al. [69] PARADIGM � � � � � �
Chen et al. [68] iPOP � � � � � �
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are favored for DEGs and DEPs, respectfully, when three or more
samples are available over time. For discovery of DEGs among
paired samples analyses, we recommend the use of DEGseq, as
it is designed for single subjects, provides effect sizes and P-val-
ues, considers a limited variance estimate and is validated in
independent samples. On the other hand, edgeR and GFOLD are
suboptimal as they require user-defined parameters (Figure 4,
column ‘User-defined parameters heuristics’). The unbiased
and parameter-free DEseq approach, which is not designed for a
single subject, is likely performing better in these conditions
than either edgeR or GFOLD that require subjective, and possi-
bly biased, user-defined parameters. However, currently no
study has yet been conducted to compare the accuracy of differ-
ent single-subject DEG methods against one another. For dis-
covery of DEPs in paired samples, N-of-1-pathways kMen has
been shown in simulation and in real data sets to outperform
other paired DEPs methods; however, the N-o1-pathways
Wilcoxon remains the most validated, which includes a clinical
trial. Of note, ClusterT is the only approach controlling for inter-
genic correlation (Figure 5, column ‘Intergenic correlation’) that
can create enrichment biases; however, additional validations
are required.

In absence of multiple samples from a single subject with its
own isogenic reference, we recommend analyses providing bio-
logically and clinically interpretable results of altered expres-
sion against heterogenic references (a population). Among
single-sample SSA, we recommend RankComp and individPath
for DEG and DEP determination, respectively. RankComp is cur-
rently the only method that provides DEGs based on the com-
parison of a single sample against a reference cohort. While for
DEP determination, we suggest individPath because of its rigor-
ous formal model and the small number of transcripts required
to detect DEPs.

Imputing altered or dysregulated expression of a transcript
of a pathway is not feasible for inadequately designed clinical
assays or experiments aimed at interpreting a single transcrip-
tome in the absence of any transcriptome reference (e.g. iso-
genic, heterogenic). To address this, transcript and pathway
expression can be compared within a sample using FAIME or
ssGSEA. However, the output of higher or lower expression of a
mechanism as compared with the sample expression may sim-
ply be the normal state of such a mechanism with the interpre-
tation being ambiguous.

While transcriptome analyses can provide DEGs and DEPs
for single subjects and are the most mature, we anticipate
that as the field advances, it will be possible to reveal novel
physiological state correlations through the construction and
analysis of multi-scale personalomes. The analysis of a single
scale (i.e. -omics data) alone cannot reveal the complex picture
underlying a disease that may be fully captured only by fusing
together multi-omics data (from genome to metabolome, to
exposome) of an individual, i.e. via comprehensive personalome
profiles. In fact, the combination of multiple -omics data can lead
to the detection of a comprehensive individual variability,
essential for providing new insights into disease pathophysiol-
ogy and mechanisms that may explain the differences in drug
responses in the human population. As shown in Figure 1 and
discussed in ‘Clinical applications’ section, by delivering dimen-
sion reduction and biomolecular interpretations, SSAs enable
new types of transcriptomic analyses for clinical interpretation
that compare with the methods applied to DNAseq for clinical
interpretation. For example, current DNA sequence-based, and
classifier-based SSA commercial offerings provide oncologists
with annotations of oncogenic or tumor suppressor genes with

copy number variants, gain- or loss-of-function mutation,
expression fold changes (tumor versus normal) or gene expres-
sion against reference tissue and occasionally protein activity.
However, these are limited results for a handful of known genes
that have been highly curated to apply to a narrow set of dis-
eases, while novel SSA approaches discussed in this manuscript
unbiasedly assess the entire transcriptome for DEPs and DEGs
in diseases that may be far less well studied, analyses which are
not currently available commercially. Clinical utility of these
assessments requires additional studies or a knowledge base,
similarly to the interpretation of novel mutations for DNA
(Figure 1; ‘Studies informing clinical interpretation’).

Opportunities for future work

Analysis of multi-omics dynamic profiles including transcrip-
tome, proteome, methylome and metabolome can additionally
provide indicators of real-time phenotypes and physiology in
individuals that cannot be obtained through examination of the
static genome alone. In doing so, GxE interactions are revealed
[79]. -Omics integration has been used successfully for the iden-
tification of novel associations between biological entities (e.g.
genes, proteins) and disease [74], patient stratification [73] and
biomarker discovery or drug repositioning [76]. However, these
strategies have not yet been applied for the integration of multi-
omics data of an individual and biological knowledge.

When taking into account the integration of multiple -omics,
an important aspect to consider is the variability of data
between each -omics, not only with respect to the represented
biological process but also with the associated noise levels,
identification accuracy, coverage and temporal resolution of
data. These differences complicate the integration and joint
modeling of multi-omics data. While this is intuitively clear, it
remains computationally and experimentally challenging to
effectively integrate longitudinal multi-omics data. For one,
each biological entity (e.g. gene, metabolites) has different time-
dependent modulation and responds to signals on a different
specific time scale, even if contributing to the same biological
process. Second, biological processes that take place in inacces-
sible tissues (e.g. brain, internal organs) cannot be feasibly
monitored in a longitudinal approach, even if a single sample is
possible. Additional challenges are related to the same variables
of autocorrelation across repeated measurements, random
effects and missing data. Moreover, the design of longitudinal
studies of a single subject must account for repeated measures
preferably being equally spaced in time, allowing the increase
in statistical power of the approach [85]. An obvious opportunity
that has not been reported is to learn convergent patterns at
one -omics scale (e.g. transcriptome) and correlate it with those
of another scale (e.g. proteomics), thus providing internal vali-
dation and increasing the noise-to-signal ratio.

Futures studies for SSA of transcriptomes will need to focus
on four underreported approaches: (1) variance estimation in
isogenic conditions from single-subject measures (without
requirement of reference transcriptomes), (2) activity level of
pathways (functional, e.g. upregulated versus downregulated)
rather than expression direction (overexpressed versus under-
expressed), (3) the analysis and integration of comprehensive
personal -omics data to infer dysregulated molecules and
mechanisms and (4) rigorous validation of DEGs, DEPs, or other
results with appropriate in vitro, in vivo and clinical trial
investigations.

As clinical research continues to explore the importance of
patient heterogeneity, we encourage more investigators to
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adopt single-subject study designs and -omics analyses when
appropriate to maximize the information made available by
high-throughput technologies. Access to these analysis tools
may also allow researchers to more thoroughly explore certain
rare case studies, outliers and patients-of-special-interest in a
way that they could not have done if relying only on traditional
large cohort-based statistics. This is particularly true if an
isogenic paired-sample study design can be used to answer a
meaningful biological or clinical question. The use of persona-
lome integrated with the available external knowledge (e.g.
repositories on disease–disease association, target–gene inter-
actions, gene–gene interaction) can provide new opportunities
for developing more robust and comprehensive results that
account for all the interacting -omics and temporal behaviors of
the biological system of an individual.

Finally, personalome researchers should consider a creative
application of powerful engineering and mathematical tools
that have not yet been applied to study the mechanisms under-
pinning the personalome of an individual. For example, compu-
tational methods used to analyze time series data include
generalized linear mixed models, generalized estimating equa-
tions, Markov models, nonparametric or semi-parametric mod-
els or Bayesian models and dynamic pathway analysis [85].
However, these methods have not yet been applied to study the
machinery underpinning the personalome of an individual.
Clearly, these methods are not directly applicable as they are
cohort-centric; however, innovations may altogether extend the
paradigm of their current implementation.

Key Points

• For the ‘personalome’ to enable precision medicine
from -omics data, we need to move from cohort-
focused assays and analytics to individualized (single-
subject) studies.

• We survey and categorize methodology by biological
and informatics input, mathematical formalism and
procedure output.

• Our review focuses on the transcriptome dimension of
the personalome showing a great development to date,
while proteomics, multi-scale and other scales of biol-
ogy present open challenges.

• The personalome methods need more rigorous valida-
tions, as few have been validated in vitro, in vivo or in
clinical trials.

• The emerging personalome represents a largely unex-
plored application of -omics data and potentially has
important consequences for improving patient
outcomes.
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