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Abstract

Eighty percent of DNA outside protein coding regions was shown biochemically functional by the 

ENCODE project, enabling studies of their interactions. Studies have since explored how 

convergent downstream mechanisms arise from independent genetic risks of one complex disease. 

However, the cross-talk and epistasis between intergenic risks associated with distinct complex 

diseases have not been comprehensively characterized. Our recent integrative genomic analysis 

§This work was supported in part by The University of Arizona Health Sciences CB2, the BIO5 Institute, NIH (U01AI122275, 
HL132532, CA023074, 1UG3OD023171, 1R01AG053589-01A1, 1S10RR029030)

Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons 
Attribution Non-Commercial (CC BY-NC) 4.0 License.

Correspondence to: Haiquan Li; Yves A. Lussier.

Jiali Han, Jianrong Li and Ikbel Achour are joint-first-authors.

HHS Public Access
Author manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:
Pac Symp Biocomput. 2018 ; 23: 524–535.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unveiled downstream biological effectors of disease-specific polymorphisms buried in intergenic 

regions, and we then validated their genetic synergy and antagonism in distinct GWAS. We extend 

this approach to characterize convergent downstream candidate mechanisms of distinct intergenic 

SNPs across distinct diseases within the same clinical classification. We construct a multipartite 

network consisting of 467 diseases organized in 15 classes, 2,358 disease-associated SNPs, 6,301 

SNP-associated mRNAs by eQTL, and mRNA annotations to 4,538 Gene Ontology mechanisms. 

Functional similarity between two SNPs (similar SNP pairs) is imputed using a nested information 

theoretic distance model for which p-values are assigned by conservative scale-free permutation of 

network edges without replacement (node degrees constant). At FDR≤5%, we prioritized 3,870 

intergenic SNP pairs associated, among which 755 are associated with distinct diseases sharing the 

same disease class, implicating 167 intergenic SNPs, 14 classes, 230 mRNAs, and 134 GO terms. 

Co-classified SNP pairs were more likely to be prioritized as compared to those of distinct classes 

confirming a noncoding genetic underpinning to clinical classification (odds ratio ~3.8; p≤10−25). 

The prioritized pairs were also enriched in regions bound to the same/interacting transcription 

factors and/or interacting in long-range chromatin interactions suggestive of epistasis (odds ratio ~ 

2,500; p≤10−25). This prioritized network implicates complex epistasis between intergenic 

polymorphisms of co-classified diseases and offers a roadmap for a novel therapeutic paradigm: 

repositioning medications that target proteins within downstream mechanisms of intergenic 

disease-associated SNPs. Supplementary information and software: http://lussiergroup.org/

publications/disease_class

Keywords

SNP; Intergenic; Noncoding; Disease class; Biological similarity; Enrichment

1. Introduction

Human diseases can be classified via multiple criteria: cell type, tissue, organ, system, 

topological body region, pathophysiological, epidemiological characteristics, and etiological 

causes. Thus, in clinical classification of diseases, genetic disorders have conventionally 

relegated to a subset of the classification pertaining to its etiology. The advent of genomic 

assays now offers the opportunity to utilize unbiasedly a broad number of molecules of life 

to redefine the architecture of clinical classifications.

For example, cancers pertaining to distinct organ and cell types have been shown to share 

common somatic mutations 1 or transcriptomes and sometimes respond to the same therapy 

in spite of their distinct conventional classification, suggesting a new systems oncology 

etiology to cancer pathophysiology. We have previously shown that the miRNome of tumors 

classify the primary cancers by organ of origin as expected, while their paired metastases 

remarkably classify according to their progression (oligometastatic vs. polymetastatic) 

regardless of the primary site and metastatic site 2. Recently, Genome-Wide Association 

Studies (GWAS) have implicated the same polymorphisms to distinct diseases of the same 

clinical class (e.g., cardiovascular system). Many distinct autoimmune diseases are found to 

have the same polymorphisms relating to the major histocompatibility complex region of 

chromosome 6, along with some other chromosome regions involving signaling in immune 
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response (e.g., cytokine, interleukin, and interferon) 3, 4. These same polymorphisms have 

also been associated with distinct traits of the metabolic syndrome 5.

In addition to studying each disease class separately, studies have also been conducted at a 

system level to unveil mechanisms that link individual diseases to a disease class. A disease 

class is likely to be driven by common genes and even common biological sub-networks, 

thus rendering a cluster structure or modularity in the biological network that separates it 

from other classes 6. The modularity for disease classes has been observed in various types 

of molecular networks based on their risks identified in shared intragenic regions, including 

disease-gene networks 7–10, drug-target networks 11, transcription factor networks 6, 12, and 

protein-protein interaction networks 13. Ohn broadened the similarity between diseases by 

looking into correlated polymorphisms by GWAS p-values 14. In addition, two studies 

leveraged trans- Expression Quantitative Trait Loci (eQTL) analyses studies respectively 

limited to the immune systems and node-degree properties 15, 16. On the other hand, 

traditional genetic-interaction studies such as PLINK 17 and BOOST 18, as well as recent 

integrative functional studies on non-coding disease variants 19, 20 such as GWAS3D 21 and 

CEPID 22 may also provide insight into how distinct diseases of the same disease class co-

classify together. In spite of the genetic, genomic, and biological network studies generally 

conducted for specific disease classes, the biological mechanisms of the majority of disease-

associated intergenic polymorphisms remain obscure as well as their contribution to 

explaining these risks at the disease class level.

We recently reported that downstream functional effects of distinct intergenic Single 

Nucleotide Polymorphisms (SNP pairs) associated with the same complex disease are likely 

to converge at some levels of biology such as sharing downstream transcripts or regulating 

functionally similar biological pathways or processes 23. Our collaborators, Moore and 

Denny research groups, confirmed genetic synergy or antagonism between the top 

prioritized convergent intergenic SNP-pairs in a GWAS of Alzheimer’s and a Phenome-

Wide Association Study (PheWAS) of rheumatoid arthritis 23. However, this study did not 

address the convergent mechanism of SNP pairs between distinct diseases associated with 

the same clinical classification (co-classified).

Here, the downstream functional similarity between two SNPs (similar SNP pairs) is 

imputed using a multiscale information theoretic distance model for which p-values are 

assigned by conservative permutation resampling of network edges without replacement 

(node degrees constant). We hypothesized that we could extend this approach to identify 

downstream mechanisms of intergenic SNPs with distinct co-classified diseases, by 

integrating the classification information of the NHGRI diseases/traits and reanalyzing the 

results, to infer the noncoding genetic architecture of disease classes, which has implications 

for drug repositioning and mitigation of risks for multiple diseases within the same class.

2. Methods

2.1. Main Datasets

We surveyed Lead SNPs (SNPs investigated in GWAS) from two datasets, the National 

Human Genome Research Institute (NHGRI) GWAS catalog 24 and the eQTL association 
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dataset named SNP and Copy Number Variant Annotation (SCAN) database 25. The NHGRI 

GWAS catalog provides a comprehensive resource by systematically cataloging and 

summarizing the key characteristics of reproducible trait/disease-associated SNPs from 

currently published GWAS 24. The NHGRI GWAS catalog comprises 7,236 associations 

between 574 diseases/traits and 6,432 distinct SNPs (6/7/2012). The SCAN database 

contains 4,189,682 eQTL associations between 833,004 distinct SNPs and 11,860 mRNA at 

P≤10−4 from lymphoblastic cell lines. The integration of these two datasets yields 2,358 

Lead SNPs in common (1,092 intergenic SNPs), along with their traits/diseases and mRNA 

information. The 574 NHGRI diseases/traits were classified into 15 organ & clinical systems 

disease classes according to Maurano et al. 6 along with curation (Suppl. Tab. 1).

A pairwise analysis was conducted on all possible combinations of two Lead SNPs inherited 

in distinct haplotypes (pairs of SNPs in strong linkage disequilibrium (LD) were removed 

from our study). The HapMap CEU LD dataset 26 was used to determine LD level and the 

exclusion criterion of r2≥ 0.8. Since our major interest is in intergenic variants (i.e., located 

between genes), the pairs in which both SNPs are intragenic (i.e., located within genes) were 

also excluded. The definition of “intergenic” and “intragenic” are derived from dbSNP 

(Build 138 on 2/21/2014) 27, which considers a SNP in a gene region to be intragenic if it is 

within 2kb upstream (5′ side) or 0.5 kb downstream (3′ side) of that gene. ~2.8 million 

pairwise combinations were derived from these Lead SNPs with r2<0.8, associated with 467 

diseases, 6,301 mRNAs, 1,635 molecular functions (MF), and 2,903 biological processes 

(BP). Among them, 1,977,927 pairs contain at least one intergenic SNP (named as 

intergenic Lead SNP pairs): 595,053 intergenic-intragenic and 1,382,874 intergenic-

intergenic. 800,438 pairs are intragenic-intragenic. Among the intergenic Lead SNP pairs, 

211,808 are associated with same disease classes (i.e., each SNP in one pair is associated 

with a specific disease class) while 1,766,119 are associated with distinct ones.

2.2. Calculation of SNP similarity

The prioritization process was applied to the intergenic Lead SNP pairs based on their 

convergence of eQTL-associated biological mechanisms. Three approaches were exploited 

to determine such shared (convergent) candidate mechanisms: (1) eQTL-associated mRNA 

overlap, (2) molecular function (MF) similarity of eQTL-associated mRNA, and (3) 

biological process (BP) similarity. We extracted MFs and BPs of each mRNA associated 

with a SNP from gene ontology (GO) annotations 28, 29 to calculate the similarity of a SNP 

pair 23 (Table 1 & Figure 1).

2.3. Network permutation to establish the p-values for observed mRNA overlap and ITS 
scores between two SNPs

To determine the statistical significance of imputed biologically convergent mechanisms of 

SNP pairs, permutation of the eQTL network was conducted for mRNA overlap, molecular 

function similarity, and biological process, separately. We also included the eQTL 

associations of SNPs not known to be associated with any diseases to create a null 

distribution of SNP mRNA overlap (statistical mRNA overlap) and ITS. When examining 

the significance of each of the three mechanisms, we controlled the original node degree 

(ND) of each specific SNP and each specific mRNA. Specifically, we kept the number of 
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mRNAs associating with one SNP the same, or vice versa, during the resampling of the 

bipartite eQTL network (shuffling the associations between SNPs and mRNAs). Deep 

permutations at 100,000 times were conducted on the Argonne Lab Beagle supercomputer to 

reach a sufficient power (20 million core hours). P-values were derived from the imputed 

results of the observed eQTL network and the set of permuted networks. False Discovery 

Rate (FDR) was used to adjust for multiplicity, and the SNP pairs with FDR<0.05 are 

termed prioritized Lead SNP pairs.

For MF and BP similarity calculations, a similar permutation procedure was conducted as 

done for mRNA overlap, except that SNPs and mRNAs without corresponding GO 

annotations were removed and only those with BP or MF associations remained in the 

bipartite network for resampling. We further investigated the significance of overlapped GO 

terms from the SNP-GO-SNP triplets for every pair of SNPs based on the same set of 

permutations and prioritized the overlapped terms between pairs of SNPs with a FDR<0.05. 

The whole procedure of permutations was conducted multiple times for different eQTL 

association cutoffs ranging from P≤10−4 to P≤10−6 and at three levels of node degrees: 

ND≥1, ND≥3, and ND≥5.

Through such stringent scale-free network controls, not only will the SNP pairs associated 

with same mRNAs be prioritized, but also the pairs in which two SNPs are associated with 

distinct mRNAs, if biological similarity exists.

2.4. Internal Validation: enrichment studies of co-classified intergenic SNP pairs among 
prioritized pairs

To demonstrate whether the shared biological mechanisms of intergenic Lead SNP pairs are 

relevant to the underlying biology of disease classes, we assessed whether they are more 

likely to be found related to the same disease class than those across distinct classes. One-

tailed Fisher’s Exact Test (FET) was applied for the enrichment study, and odds ratios of 

significant mRNA overlapping, MF, and BP similarities for SNP pairs associated with the 

same disease classes were calculated by FET at multiple eQTL p-value cutoffs and three 

levels of node degrees.

2.5. External Validation: ENCODE regulatory elements and chromatin interaction 
enrichment of co-classified prioritized intergenic SNP pairs

The potential mechanisms at play for the prioritized SNP pairs were also investigated. We 

evaluated whether regulatory mechanisms were more likely to occur in prioritized intergenic 

SNP pairs associated with the same disease class as compared to their counterparts (distinct 

classes or insignificant). We integrated Encyclopedia of DNA Elements (ENCODE) data 19 

of Lead SNPs and conducted Fisher’s Exact Test to assess the enrichment of molecular 

regulations within prioritized SNP pairs of the same disease classes. Three possible shared 

regulatory mechanisms are assessed for pairs of SNPs located in distinct regions, including 

(1) binding with same transcription factor (via ChIP-seq), (2) binding with distinct 

transcription factors (via ChIP-seq) connecting through protein-protein interaction (PPI), 

and (3) within the anchor regions of long-range chromatin interactions (via ChIA-PET34). 

We compared the enrichment of regulatory mechanisms with two conventional methods, 
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which prioritized SNP pairs by (1) any intergenic Lead SNP pairs and (2) intergenic Lead 

SNP pairs with at least one mRNA overlap (non-statistical mRNA overlap) in eQTL 

associations, respectively. To avoid loss of information when calculating regulatory 

functions between Loci in ENCODE, every Lead SNP was extended to its strongly 

associated LD SNPs based on the RegulomeDB database 35 (inheritable haplotype).

3. Results and Discussion

3.1. Overall results and visualization

Prioritization of convergent downstream mechanisms of SNPs required extensive 

conservative scale-free permutation resampling of network edges (node degrees constant), 

shown substantially more conservative than conventional theoretical statistics or similarity-

scores cutoffs (Suppl. Fig. 1). We prioritized 3,870 intergenic Lead SNP pairs (1,378 

intergenic-intergenic; 2,492 intergenic-intragenic) at FDR<0.05 that share at least one of the 

three imputed biological mechanisms, of which 755 pairs are found within the same disease 

class (280 intergenic-intergenic pairs; 475 intergenic-intragenic; 80 were associated with the 

same diseases). Without additional prioritization, the network relates these 755 pairs with as 

many as 1,683 mRNAs and 2,060 GO terms. After convergent mechanism prioritization, 

these SNP pairs implicate 14 disease classes, 277 Lead SNPs (167 intergenic, 98 noncoding 

intragenic, 12 protein-coding), 230 mRNAs, and 134 GO mechanisms. A simplified network 

shows only the 755 prioritized intergenic Lead SNP pairs and their related disease classes, 

leaving out the mRNAs and GO-terms for simplicity (Fig. 2). 14 of the 15 studied disease 

classes harbor convergent biological processes and molecular functions perturbed by a set of 

intergenic SNPs with similar downstream effects, presenting an apparent modularity for 

each class. We further show a sub-network of prioritized biological mechanisms for the 

prioritized SNP pairs associated with the same classes in Fig. 3. The convergent connections 

among intergenic SNPs of distinct diseases within the same disease class suggest the 

investigation of an unusual form of pleiotropy: distinct intergenic risks of co-classified 

disease sharing common downstream mechanisms that could affect the same target 

transcripts that may relate to the emergence of both diseases in the same pathophysiological 

classification (e.g., Fig. 4 showing the detail of co-classified diseases associated through 

SNP pair similarity in Fig. 2, only cancer and cardiovascular system shown).

3.2. Enrichment of shared biological mechanisms in prioritized intergenic SNP pairs of 
distinct co-classified diseases (Methods 2.4)

We investigated whether intergenic Lead SNP pairs, with each SNP associated with two 

distinct co-classified diseases, were more likely to share a biological mechanism 

(prioritized) than SNP pairs associated with distinct diseases classified in distinct 

pathophysiological classes. Enrichment analyses were performed for the 755 prioritized SNP 

pairs associated with same classes among 3,870 prioritized intergenic Lead SNP pairs at 

different eQTL p-value cutoffs (10−6 ≤ eQTL p-value≤10−4; 100,000 permutation 

resampling, SNP pair FDR<0.05) and different node degrees SNP node degree (count of 

mRNAs associated with that SNP at the eQTL p-value cutoff). As shown in Fig. 5, odds 

ratios (ORs) range from 1.4 to 3.8 (x-axis: 5.1×10−6≤p-value≤0.02), 1.4 to 3.4 

(6.5×10−26≤P≤2.1×10−2), and 1.9 to 3.7 (8.3×10−4≤P≤2.2×10−7) for mRNA overlapping, 
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MF similarity, and BP similarity, respectively. This internal validation supports the 

hypothesis that biological mechanisms are more likely to be shared within a class of diseases 

and may define in part a common pathophysiology of otherwise distinct diseases.

3.3. Enrichment of ENCODE regulatory elements and chromatin interaction in prioritized 
intergenic SNP pairs of distinct co-classified diseases (Methods 2.5)

ENCODE data provides an opportunity to question if convergent candidate mechanisms of 

prioritized SNP pairs of co-classified diseases imputed by eQTL associations may be 

attributed to common regulatory elements (e.g., transcriptional factors) or long-range 

chromatin interactions. If so, this could be suggestive of possible epistasis between disease 

risks of distinct co-classified diseases, in other words, a disease class epistasis. We identified 

substantial enrichment in three types of regulatory elements: shared transcription factor (Fig. 

6panel A), interacting transcription factors (Fig. 6panel B), and long-range chromatin 

interactions in the region of the SNPs in the pair (Fig. 6panel C). However, the effect size 

(odds ratio) of enrichment of regulatory elements in SNP pairs associated with distinct co-

classified diseases shown in the figure is about 30 percent smaller than that of our previously 

published enrichment of SNP pairs associated with the same disease (not shown 23). Taken 

together, these results indicate that common regulatory mechanisms of intergenic SNPs 

strongly underpin the pathogenesis of a disease and to a moderate degree some mechanisms 

are also shared by distinct, yet pathophysiologically co-classified diseases.

4. Limitations and future studies

First, we only reported eQTLs derived from LCL cell lines. Studies on 44 tissues in the 

GTEx project are ongoing and will be reported elsewhere. SNPs with marginal p-values 36 

will also be investigated using the proposed method to unveil their pairwise synergy. Second, 

gene ontology annotations are biased by human interest. Even though the biases were 

controlled partially by the scale-free persisted permutations, some biases may still exist and 

induce false positive results. Alternative unbiased approaches may be worth incorporating in 

the future such as the information-theoretic framework to address the accuracy of the GO 

annotation 37–39. Third, the permutations on large eQTL networks are expensive; we are 

working on more efficient implementations and strategies. Fourth, the validation in a GWAS 

of epistasis between convergent intergenic SNPs associated with distinct co-classified 

diseases is not possible retrospectively as clinical phenotypes are generally obtainable for 

only one disease in a GWAS. A prospective study for the validation is cost-prohibitive; we 

are thus planning a collaboration with eMERGE researchers to conduct a PheWAS. Finally, 

the SNPs prioritized in this study are statistically associated with but not necessarily 

functionally causal to a disease (or co-classified diseases) thus other polymorphisms 

inherited in the same loci must be considered. Of note, our approach incorporated this 

calculation through the Linkage Disequilibrium parameter (Methods section 2.5). Also, 

further systematic investigation on the relationship between functional synergy and genetic 

interaction of SNPs prone to same or co-classified diseases will provide insight into the 

mechanisms of disease classes.
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Beyond the modularity within classes, related disease classes are obviously also 

interconnected through shared genes and gene ontology annotations in Fig. 3. This study 

focused on intergenic SNPs prioritized across distinct diseases of the same class, leaving out 

thousands of SNP pairs prioritized across classes. Indeed, cross-class biomodularity merits 

its own publication and additional analyses due to its complexity.

5. Conclusion

Using the quantified measurement of SNP biological similarity we recently developed, we 

identified 755 intergenic SNP pairs associated by convergent eQTL function to distinct, yet 

pathophysiologically co-classified diseases. We found that these independently inherited 

(LD r2<0.01) intergenic SNP pairs were more likely to be enriched in (i) shared transcription 

factors, (ii) interacting transcription factors, and (iii) long-range chromatin interactions. A 

common genetic architecture of the pathophysiology of co-classified diseases is 

unsurprising; however, a common noncoding intergenic architecture for clinical 

classification harbors many new questions. For example, is epistasis occurring between 

distinct disease risks, and if so, can some disease risks protect against other diseases through 

antagonism of long-range chromatin interactions implicating noncoding intergenic regions? 

Additionally, can we implicate new drug targets or reposition drugs through the shared 

intergenic interactions between distinct co-classified diseases? While the prioritized 

intergenic SNP pairs associated with each disease class reassuringly recapitulates the 

pathophysiological classification of disease of complex inheritance, does this implicate that 

complex diseases are fundamentally distinct from Mendelian ones through these noncoding 

interactions? Indeed, GWAS identified about half the variants in intergenic regions. 

However, the array platforms are seeded biasedly with half the probes in intergenic regions 

(selection bias). This proposes that more than 80% of the complex-disease associated 

variants could be located in intergenic regions, suggesting that if the heritability gap is 

attributable to genetic interactions, the majority of these would occur with intergenic 

noncoding regions. On the other hand, our study aligns further intergenic genetic signal with 

that of the central dogma of molecular biology, as we provide for each prioritized SNP pair 

falsifiable hypotheses of convergent mechanisms implicating coding regions (eQTL 

mRNAs).

This prioritized network implies complex epistasis between intergenic polymorphisms of co-

classified diseases and offers a roadmap for a novel therapeutic paradigm: repositioning 

medications that target proteins within downstream mechanisms of intergenic disease-

associated SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Nested Information theoretic calculations. The similarity between SNP pairs is calculated by 

three nested steps subsequently (I) similarity between two gene ontology terms (GOITS), (II) 

similarity between two genes (mRNAITS) using GO term similarities, and (III) similarity 

between two SNPs (SNPITS) using mRNA similarities.
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Fig. 2. 
The network of 755 prioritized intergenic SNP pairs within disease class at FDR<0.05. 80 

SNP pairs are within the same disease (previously published), 675 are within the same 

disease class but across distinct diseases (new). 3,115 SNP pairs prioritized cross-class are 

not shown. 19 SNPs were associated with two distinct diseases in distinct classes by GWAS 

and shown.
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Fig. 3. 
The subset of the prioritized network of disease class mechanisms containing 230 mRNAs 

shared between 428 SNP pairs and their associated GO mechanisms (48 GO-MFs, and 86 

GO-BPs). Biological modularity of shared groups of mRNAs is associated with distinct 

SNPs themselves associated with distinct co-classified diseases. Not shown are the 

biomodules where 327 SNP-pairs are associated by distinct mRNAs to distinct but similar 

pathways (Methods 2.2). Names of classes are defined in Fig. 2.
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Figure 4. 
Details of implicated co-classified diseases through SNP pair similarity confirming shared 

genetic underpinning and biological mechanisms. Two classes, cancers (Fig. 2–3 #3) and 

cardiovascular disease (Fig. 2–3; #6), shown. Disease-pairs are related by at least one out of 

755 prioritized pairs of Lead SNPs, each associated with a disease in the pair respectively. 

Previous studies have shown somatic mutations and transcriptomes can reclassify cancers 

molecularly. Here a new property is presented: common mechanisms of noncoding 

intergenic regions.
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Fig. 5. 
Enrichment of shared biological mechanisms among 755 intergenic Lead SNP pairs 

associated with the same disease classes (Method 2.1, LD cutoff r2<0.8), remains similar 

with more stringent LD cutoff (r2<0.01, not shown) and also remains the same when 

excluding the previously published 80 SNP pairs associated with the same diseases (results 

not shown). The subset of 280 prioritized SNP pairs comprising only intergenic-intergenic 

pairs also remains significant (Suppl. Fig. 2).
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Fig. 6. 
Enrichment of common ENCODE-derived regulatory mechanisms in genomic regions of the 

prioritized intergenic Lead SNP pairs for disease classes. More stringent LD cutoff 

(R2<0.01) yielded similar results (not shown).
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Table 1

Biological similarity calculations between two SNPs using nested Information Theoretic Similarity (ITS)

Nested calculations (3 steps)

1. Calculate the Information Theoretic Similarity (ITS) between two GO terms (GOITS) associated with the two SNPs through mRNAs using 
Lin’s method 30, 31.

2. Based on GOITS, calculate the information theoretic similarity between two distinct mRNAs (mRNAITS), each associated with a SNP within a 
SNP Pair, using a modified Tao’s approach 31–33.

3. Determine the semantic biological similarity between two SNPs (SNPITS) within a SNP pair using the mRNAITS of pairs of mRNAs 
associated with the two SNPs respectively, using Li’s nested ITS approach we recently published 23. The SNPITS values range from 0 to 1, with 
0 corresponding to no similar downstream effects and 1 corresponding to identical downstream effects (e.g., either the same mRNAs or distinct 
mRNAs with the equivalent GO terms). The similarity measurement between SNPs can capture relationships between SNPs including the ones 
without any common mRNAs in their eQTL associations.
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